Dr. D. Y. Patil Pratishthan’s

\V4
D I P DR. D. Y. PATIL INSTITUTE OF ENGINEERING, MANAGEMENT &

DR. D. Y. PATIL

INSTITUTE OF RESEARCH, AKURDI

ENGINEERING, . - N
MANAGEMENT Approved by A.1.C.T.E, New Delhi, Maharashtra State Government, Affiliated to Savitribai Phule Pune

AND RESEARCH University Sector No. 29, PCNTDA, Nigdi Pradhikaran, Akurdi Pune 411044. Phone: 020-27654470, Fax: 020-

27656566 Website: www.dypiemr.ac.in Email: principal@dypiemr.ac.in

Ref.No: DYPIEMR/Admin/2021-22 Date: 2 /6 /2022
NAAC 1.4.1 Curriculum Feedback Report

(A.Y- 2021-2022)

Sr.No Stakeholder Feedback Collected

Syllabus should based on practical basis

Industrial Visit and expert lecture from industry person
required, virtual visits should me more

Software’s like ANSIS, VHDL,MATLAB, MODFLOW is
1 Students required in addition languages like R, Python and SQL also
included in syllabus

The efficient online practical platform should be provided.

Faculty should upload their courses on e-platform like
Udemy and coursera.

The curriculum should be design a such way that it fulfill
2 Teachers industry demand

For practical’s more time should be given in academic

Give printed manual for submission

Lectures from Industry experts must be there

3 Alumni To Improve communication skill, class should be there

Take add-on courses on new techniques as per industry
requirements

Overall improvement should be there

The softskills workshop should be there for students
4 Parents

The placement should be there for each student

Motivation should be there for student to have higher degree

)
il
PRINCIPAL
De. B. Y. Putil Institute of Engineering,

Management & Research
Akurdi, Pune - 411 044

http://www.dypiemr.ac.in/
mailto:principal@dypiemr.ac.in

1. Mail to BOS regarding curricular gap of SE, TE, BE (2019 course) of E&TC.

2. Guest Lecture for TE students of AI&DS and Computer Engineering department

Dr DY Patil Pratishthan’s
Dr. D.Y. Patil Institute of Engineering, Management and
Research, Akurdi, Pune

DI No.:
ACAD/DI/56B

Academic Year:
2021-22

Report of Event Organized

Revision : 00
Dated : 20/11/2019

Term =l

Department of AI&DS and Computer Engineering

Date of Preparation
: 09.09.2021

Dr.D. Y. Patil Pratishthan’s

DR.D.Y.PATIL INSTITUTE OF ENGINEERING, MANAGEMENT & RESEARCH

Approved by A.1.C.T.E, New Delhi , Maharashtra State Government, Affiliated to Savitribai Phule Pune University
Sector No. 29, PCNTDA , Nigidi Pradhikaran, Akurdi, Pune 411044. Phone: 020-27654470, Fax: 020-27656566

Website : www.dypiemr.ac.in Email : principal.dypiemr@gmail.com

Al&DS and COMPUTER ENGINEERING DEPARTMENT

Participants
Venue
Date

Organizing Team

GUEST LECTURE
on

Devops Tool
: TE students of DYPIEMR

: Online MS Teams Platform
: 08/09/2021

: Mrs. Sandhya Gundre, Mrs. Ketaki Bhoyar,
Mrs. Suvarna Patil, Program Chair, ACM.

http://www.dypiemr.ac.in/
mailto:principal.dypiemr@gmail.com

Table of Content

Sr. No

Content

Page No.

1. Guest Lecture on “Guidance for Higher Studies (M.S.)”

2. Appendix

.
il
.
Iv.
V.
Vi.

Vii.

Notice

Invitation to the Guest
Attendance Record
Feedback Forms
Analysis of Feedback
Letter of Conduction
Speakers Feedback

1. Notice

DYP
E’(‘;R,"tjl,i“i‘& Dr DY Patil Pratishthan’s DI No.-
3 Dr. D.Y. Patil Institute of Engineering, Management and N
) ACAD/DI/72
Research, Akurdi, Pune
Academic Year: Expert Lecture Notice Revision : 00
2021-22 P Dated : 20/11/2019
Date of
Term -1 Computer Engineering Department Preparation :
1/09/2021

EXPERT LECTURE

All TE Computer students are hereby informed that Expert Lecture on “DevopsTools” will be conducted in
association with ACM, Students Chapter. The Expert Lecture is organized to enable the understanding about
the techniques, and best practices to create cleaner, more readable, more efficient code with minimal errors.

Attendance is mandatory.

TOPIC: “DevopsTools”

Date & Time: 08" September 2021, 10. 00 am

Speaker: Mr. Jayant Nandurkar, Technical Architect , Whirlpool Asia LLP

Microsoft Teams Link:

https://teams.microsoft.com/l/meetup-join/19%3ameeting_ ODFIN2YyYWEtN2UyMiOONWRhLWIOY jgtNjA
5YTg3NTgzNzU2%40thread.v2/0?context=%7b%22Tid%22%3a%223a3cd3f3-9917-40dc-91e0-85146eaf5d
55%22%2¢%220id%22%3a%226fcd1471-1d3a-4e7e-88f2-ea499dd7a7e5%22%7d

Mrs. Sandhya Gundre Mrs Ketaki Bhoyar Mrs P.P Shevatekar Mrs. Suvarna Patil
Mrs. Pallavi Yevale
Guest Lecture Coordinator ~ACM Coordinator HOD Computer HOD AI-DS

2. Objectives

o To motivate students for higher studies in foreign countries.

o To aware students about real scenario in foreign countries while doing M.S.

3. Information about Speaker

Mr. Jayant Nandurkar
Technical Architect , Whirlpool Asia LLP

4. Report

Title: “DevopsTools”

Day & Date: 08/09/2021

Highlights of the Talk:

e To demonstrate the current situation in IT industry
e How to prepare for GRE & TOEFL
o Living situation in foreign countries while doing M.S.

o Motivating students to prepare themselves for higher studies

The Session was organized on MS Teams platform for the SE, TE and BE Computer

Engineering Students.

Details of the session:

The speaker itself is an alumni of DYPIEMR. He opted for higher education (M.S.)
immediately after graduation from DYPIEMR, SPPU University, Pune. He shared experience
right from preparation of GRE & TOFEL till the complete graduation and working
environment there. He also shared his experience regarding spending money on course as well
as living expenses. He motivated students for opting higher education and also cleared out
their confusions regarding many issues living outside the country. He is working at well
known position in the well known industry. At the end of session he gave his contact details to
students for any further queries.

5. Glimpses of the session

10:06 O m & © M EH Y44

@ Sandhya G started recording X

Snapshot 1: Glimpse on ongoing session by Jayant Nandurkar

Snapshot 2: Participants attending guest session

Learning Outcomes

o Students understood current situation in foreign countries.
o Students were motivated to go for higher studies.

o Students understood placement scenario after M.S.

Attendance Record

ew View Tell me what you wan

- %
n (el Calibri -

&2 Copy -

Paste B I U-

¥ Format Painter

Clipboard] Font

113 - fr

1 Full Name

2 |Ketaki Bhoyar

3 |Shivaganga G

4 |shubham.Kale

5 | AD2:Shardul Kulkarni

6 |AD2:Shardul Kulkarni

7 | AD2:Shardul Kulkarni

8 |AD2:Shardul Kulkarni

9 |AD2:Shardul Kulkarni

10 |19139_A_ Divya Khese

11 sandhya G

12 | suvarna patil

13 | Gaurav Shinde TE B 07

14 |apekshahm1909

15 A_19109_KAVITA SAHU

16 |SACO19183_Richa_Kushwaha (Guest)
17 TE A 61 SAHIL ZALA (Guest)

18 |19141_B_Rutik Ahirekar (Guest)

19 |19141_B_Rutik Ahirekar (Guest)

20 |SACO19184 Shamali Deshmukh (Guest)
21 | Aditi Kapase (Guest)

22 |\B-19134_Rushikesh Shind (Guest)"
23 Anjali Singh (Guest)

24 |B_19139_Krishna Varma (Guest)
2526 A Pratik Tekale (Guest)

26 |\Rohan Borhade BACO17111 (Guest\™"
27 | TEB 58 Rasika (Guest)

28 | Rishabhoswal A_19149 (Guest)

29 19137_A_Swati Kamble (Guest)

meetingAttendancelList (38)

B
User Action
Joined
Joined
Joined

Joined
Left

Joined
Left

Joined
Joined
Joined
Joined
Joined
Joined
Joined
Joined
Joined
Joined
Left

Joined
Joined
Joined
Joined
Joined
Joined
Joined
Joined
Joined
Joined

®

€m X o T AutoSum =

(¥ Fill -

25 Wrap Text ;Y p
Sort& Find &
Filter - Select -
Editing .

General . e i) v

L - &
Conditional Formatas Cell
Formatting -~ Table - Styles -

] Styles

Insert Delete Format

Merge & Center ~

& Clear -

Alignment o calls

C D

Timestamp

4/24/2021, 10:02:52 AM
4/24/2021, 10:02:57 AM
4/24/2021, 10:02:57 AM
4/24/2021, 10:02:57 AM
4/24/2021, 10:06:41 AM
4/24/2021, 10:06:46 AM
4/24/2021, 10:08:09 AM
4/24/2021, 10:09:15 AM
4/24/2021, 10:02:57 AM
4/24/2021, 10:02:57 AM
4/24/2021, 10:02:57 AM
4/24/2021, 10:02:57 AM
4/24/2021, 10:02:57 AM
4/24/2021, 10:02:57 AM
4/24/2021,10:02:57 AM
4/24/2021,10:02:57 AM
4/24/2021,10:02:57 AM
4/24/2021,10:10:34 AM
4/24/2021,10:02:57 AM
4/24/2021,10:02:57 AM
4/24/2021,10:02:57 AM
4/24/2021,10:02:57 AM
4/24/2021, 10:02:57 AM
4/24/2021, 10:02:57 AM
4/24/2021, 10:02:57 AM
4/24/2021, 10:02:57 AM
4/24/2021, 10:02:57 AM
4/24/2021, 10:02:57 AM -

ngAttendan:

per Help Q Tell me what you want to do

o
e Caliori .
& Copy -
Paste .
- ¥ Format Painter U &0
Clipboard L} Font
n3 - 3

A
30 |19144_B_Privanka (Guest)
31 | TEB-52-MEHTAB MANSURI (Guest)
32 |SACO19167_Riya Bankar (Guest)
33 |shubham Kale (Guest)
34 SACO19187 aftab pathan (Guest)
35 | kedar joshi (Guest)
36 | Adesh_02_A (Guest)
37 |19104_B_Nachiket (Guest)
38 |B_19109_Aniket Mishra (Guest)
39 |B_19109_Aniket Mishra (Guest)
40 | TEA12:Akash (Guest)
41 |TE B 66 Prajwal Rawate (Guest)
42 ||A-76)Harshada Patil (Guest)
(A-76)Harshada Patil (Guest)
44 | Nikhil Agarwal (Guest)
SBCO19174 _Mayur Mahajan (Guest)
46 | TEA24-Gayatri Salunkhe
47 |A_19181 Vedant Bhosale (Guest)
48 |B_19111 (Guest)
49 |B_19111 (Guest)
50 |A_75 Shivnarayan Andhare (Guest)
51 |TE_B_63_Akash Patil (Guest)
52 |A_63_Vaishnavi Pawar [Guest)
53 |19103_B_Aafiya
54 19103 _B_ Aafiya
55 |19103_B_ Aafiya
56 |Jay SACO19182 (Guest)
57 |Sujeet Dande (DYPIEMR -47) (Guest)
58 |Sujeet Dande (DYPIEMR -47) (Guest)

=
&

e
bl

meetingAttendanceList (38)

B

Joined
Joined
Joined
Joined
Joined
Joined
Joined
Joined
Joined
Left

Joined
Joined
Joined
Left

Joined
Joined
Joined
Joined
Joined
Left

Joined
Joined
Joined
Joined
Left

Joined
Joined
Joined
Left

@

I AutoSum =
(&1 Fin-

= A
=
vy O
Sort & Find &
Filter - Select -
Editing =

ab
e ral -
Wrap Text General L

» ' =2
= 3 Conditional Formatas Cell | Insert Delete Format

Formatting - Table - Styles - O
= Styes calls

55 Merge & Center - # Clear -

a
F3
3

Alignment

c D E F G H |] K L M N o P Q [3 T [~
4/24/2021, 10:02:57 AM —
4/24/2021, 10:02:57 AM
4/24/2021, 10:02:57 AM
4/24/2021, 10:02:57 AM
4/24/2021,1 7 AM
4/24/2021, 10:02:57 AM
4/24/2021, 10:02:57 AM
4/24/2021, 10:02:57 AM
4/24/2021, 10:02:57 AM
4/24/2021,1 5 AW
4/24/2021, 10:02:57 AM
4/24/2021, 10:02:57 AM
4/24/2021, 10:02:57 AM
4/24/2021, 10:04:10 AM
4/24/2021,1 7 AM
4/24/2021, 10:03:22 AM
4/24/2021, 10:03:30 AM
4/24/2021, 10:03:32 AM
4/24/2021, 10:03:32 AM
4/24/2021,1 3AM
4/24/2021, 10:03:40 AM
4/24/2021, 10:04:21 AM
4/24/2021, 10:04:21 AM
4/24/2021, 10:04:24 AM
4/24/2021, 10:08:09 AM
4/24/2021, 10:10:51 AM
4/24/2021, 10:04:29 AM
4/24/2021, 10:04:32 AM
4/24/2021, 10:05:39 AM =

Formulas

CEGTH Insert Page Layout
o
‘ &% cut Calibri -
2 Copy -) -
e 50 A
- ¥ Format Painter U s
Clipboard] Font
113 - S
A
59 |\TEA1S Tanmay Gangurde (Guest)\™

suyash jamdade

suyash jamdade

suyash jamdade

TEB-21KSHITI KANAKE (Guest)
TEB-21KSHITI) KANAKE (Guest)
TEB 76 Ruchira (Guest)
TEA_27_Sampada Jondhale (Guest)
Sahil Temgire (Guest)

Akshay Gaikwad SBC019183 (Guest)
TE-B-65 Anjali Vedpathak (Guest)
TE-B-65 Anjali Vedpathak (Guest)
B_19130_Nandini (Guest)

TEA 22 Manasi Wagh (Guest)
TEA34 Rahul Patil (Guest)

Swarupa Patil (Guest)
kolageprasads0

Soham Kulkarni (Guest)
8,19-Avanti (Guest)

Vijay ganesh_B15

Vijay ganesh_B15

80 19161 B Rohan

81 19161 B Rohan

82 |Vaishnavi Sakunde (Guest)

83 |Vaishnavi Sakunde (Guest)

84 |B_19167_Mahima_Sahu

85 B-58 lyoti Murge (Guest)

86 B-58 Jyoti Murge (Guest)

87 |SACO19186_Sapana Pande (Guest)

meetingAttendanceList (38)

Joined
Joined
Left

Joined
Joined
Left

Joined
Joined
Joined
Joined
Joined
Left

Joined
Joined
Joined
Joined
Joined
Joined
Joined
Joined
Left

Joined
Left

Joined
Left

Joined
Joined
Left

Joined

Review View Developer

-

Alignment

[8 D
4/24/2021, 10:04:56 AM
4/24/2021, 10:04:58 AM
4/24/2021,10:13:28 AM
4/24/2021, 10:13:31 AM
4/24/2021, 10:05:10 AM
4/24/2021, 10:05:40 AM
4/24/2021, 10:05:25 AM
4/24/2021, 10:05:40 AM
4/24/2021, 10:06:02 AM
4/24/2021, 10:06:02 AM
4/24/2021, 10:06:05 AM
4/24/2021, 10:08:23 AM
4/24/2021, 10:06:19 AM
4/24/2021, 10:06:46 AM
4/24/2021, 10:06:46 AM
4/24/2021, 10:07:00 AM
4/24/2021, 10:07:09 AM
4/24/2021, 10:07:17 AM
4/24/2021, 10:07:24 AM
4/24/2021, 10:07:25 AM
4/24/2021, 10:07:51 AM
4/24/2021, 10:07:37 AM
4/24/2021, 10:08:54 AM
4/24/2021, 10:07:38 AM
4/24/2021, 10:08:15 AM
4/24/2021, 10:07:44 AM
4/24/2021, 10:07:50 AM
4/24/2021, 10:10:47 AM
4/24/2021, 10:07:52 AM

25 Wrap Text

& 3= 23 Merge & Center -

meatingAttenc

elist (38) - Excel

Tell me what you want to do

T o M= | T AuoSum ¢ A
General - 4 €= ©oX [y T
& &= g [l [&) il - z
$ - % » w8 a0 Conditional Formatas Cell Insert Delete Format Sort & Find &
N Formatting = Table = Styles= - - - & Clear- Filter ~ Select =
m Number] Styles Cells Editing ~
G H 1 J K L M N o] P Q R s T -
“ y

oper

Q Tellme

meetingAttendancelist (38) - B

you want to do

-
n P Type here to search
B Inset Pagelayout Fo
.
X Cut eatibri
Bl copy ~
Pacte D P B I U-
- Format Painter
Clipboard = Fant
113 - f

A
88 SE_B_19181_Kadam_Vaishnavi (Guest)
89 A_19165_Bhame Vijay Balasaheb (Guest)
90 Satyam Raut (Guest)
91 SBCO19182 Aarti (Guest)
92 SBCO19182 Aarti (Guest)
93 SACO19113_NISHANT (Guest)
94 B 19154 Krishnesh (Guest)
TE-A-18143-DEEPESH DESALE (Guest)
96 | BE A29 Saurabh Pawar (Guest)
19116 A Wajid (Guest)
98 TE_A_54_Tanvi Dube
SE B 19101 gayatri (Guest)
100 SE B 19101 gayatri (Guest)
101 SBCO19188 Omkar (Guest)
102 Devika_B_89 (Guest)
103 INSTRU SE 263 Patil Gaurav
104 SBCO19108 (Guest)
105 SCOA191031 Prasad Shewale (Guest)
106 TEA 25 Reeva Prasad (Guest)
107 TE B 01 Neha Kale (Guest)
108 Vishal Patil
109 Vishal Patil
110 SBCO19182 Aarti (Guest)
111 TE_B_12 Sanket (Guest)
112 TEB 16 Avaneesh Yadav
113 Sayali Mundlik_DYPIEMR_BE
114 Vishwajeet Rahul Jadhav
115 Vishwajeet Rahul Jadhav
116 SBCO19186 Rohit (Guest)

o
&

T
g

@
v

meetingAttendancelist (38)

-
H R Type here to search

Joined
Joined
Joined
Joined
Left

Joined
Joined
Joined
Joined
Joined
Joined
Joined
Left

Joined
Joined
Joined
Joined
Joined
Joined
Joined
Joined
Left

Joined
Joined
Joined
Joined
Joined
Left

Joined

@

€ 3 [Merge & Center ~

Alignment

[D E

4/24/2021, 10:07:58 AM
4/24/2021, 10:08:06 AM
4/24/2021, 10:08:35 AM
4/24/2021, 10:08:53 AM
4/24/2021, 10:14:28 AM
4/24/2021, 10:09:06 AM
4/24/2021, 10:09:10 AM
4/24/2021, 10:09:12 AM
4/24/2021, 10:09:18 AM
4/24/2021, 10:09:37 AM
4/24/2021, 10:09:44 AM
4/24/2021, 10:09:45 AM
4/24/2021, 10:10:56 AM
4/24/2021, 10:09:50 AM
4/24/2021, 10:11:16 AM
4/24/2021, 10:11:17 AM
4/24/2021, 10:11:35 AM
4/24/2021, 10:11:49 AM
4/24/2021, 10:13:10 AM
4/24/2021, 10:13:31 AM
4/24/2021, 10:14:05 AM
4/24/2021, 10:14:46 AM
4/24/2021, 10:15:08 AM
4/24/2021, 10:15:29 AM
4/24/2021, 10:16:01 AM
4/24/2021, 10:16:03 AM
4/24/2021, 10:16:12 AM
4/24/2021, 10:16:50 AM
4/24/2021, 10:16:23 AM

25 Wrap Text

General - J& L‘,'] €= _,“;‘ 3 Autosum - Ay p

%] Fill ~
$-% s % m nal Formatas Cell | Insert Delete Format Sort& Find &
® *% | Formatting - Table~ Styles~ - - & Clear~ Filter - Select =
= Number " Styles calls Edting ~
G H I 1 K L M N o P Q R s T -

Feedback Form and Analysis

! Inbox (- X A 2021-20 x = Guestl X @ Whats2 X % Downlo X +

< > C / i819mFvb6-I-CmBGeENDYLCLI-B_Xc/edit

E Gusst Lacturs on Devops in AssocistionwithACM [1r

Resporses (§) Settings

®
Guest Lecture on Devops in Association with B

Tan x
Class G Drvisio

e Licture Haz mat my expestation *

12:55PM
18-09-2021 Eg

/> ENG

X $ 2021-20 X = Guestl X 1 Inbox (® X = Guestl X @ Whats? X ¥ Downlo X +

8 docs.google.com/forms/d/1negCLdg9nxWVGj819mFvb6-I-Cm8GeENDYCLJ-B_Xc/edit

The spesker was knowledgeable inzpiring and appealing to the audiance * 5]
2 3 - 5 Tr

Adequate time provided for quastion and discussion *

Would you ke to have such Gueet lectures in Future *

Ary Suggeetions/ 2ecommendations *

12:55 PM =)
18-09-2021 8

9 ™ AW) 7z Jb ENG

! Inbox (2 X 4 2021-20 X = Guestl X @ Whats/, X # Downlo X

< fform Tne X ImFvb6-1-CmB8GeENDYCLI-B_
XY - BCE

Guestions Resporces (G Se

shubham4zzonangamallesm

SyRIgEUIaVDD g gmall.com

Nama Of Partiolpant

“Vedant un|
Sharat choudhary

Zaryan Jag

Cayatr. R Pillal

Vadant Encaale

Machlkat Cuiva

Shamal Sanclp Deshmkh
Shama Vjay Eslasaias

‘Wafic Sayyad
=i Sayys: -

Tha Lestura Haz mat my sxpes

198}

B ENG

! Inbox(: X % 2021-2; x = Guestl X ! Inbox (: X = Guestl X @ Whats2A X ¥ Downlo X

& > C 8 docs.google.com/forms/d/1negCLdq9nxWVGj819mFvb6-I-Cm8GeENDYiCLJ-B_Xc/edit#r

= - -
a Guest Lecture on Deveps in AssociationwithACM [¥ Q@ @ m : o

he spasker wae knowledgeatle inooiring and sppeaiing to the audiance

Adsquate time providad for quastion and dix

2151.%)

e

12:56 PM

A Q) 7z 6 jg002001 N

X S 2021-20 X = Guestl X f Inbox(: X = Guestl X @ Whats2A X ¥ Downlo X

docs.google.com/forms/d/1negCLdg9nxWVGj819mFvb6-1-Cm8GeENDYiCLJ-B_Xc/edit¥responses

ecturs on Deveps in A

How do you rate the overal Guest Lecture

21 respzraen

Would you e to have such Guest lectures In Future 0

O rexperan

@

Ary Suggestions/ Recommendations

37 reazeraen

12:56 PM =]
18-09-2021 8

A WD) 7 Jb ENG

Letter of Conduction

D

\/
il

P

Dr. D. Y. Patil Pratishthan’s

DR. D. Y. PATIL INSTITUTE OF ENGINEERING, MANAGEMENT & RESEARCH
Approved by A.L.C.T.E, New Delhi, Maharashtra State Government, Affiliated to Savitribai Phule Pune University
Sector No. 29, PCNTDA, Nigdi Pradhikaran, Akurdi, Pune 411044. Phone: 020-27654470, Fax: 020-27656566

Website: www.dypiemr.ac.in Email: principal.dypiemr@gmail.com
Department of Computer Engineering

Date: 11/09/2021
To

Mr Raju Masand
Module Lead - FIX protocol,
FinlQ Consulting India Pvt. Ltd.

Respected Sir

On behalf of the Computer Engineering Department, Dr. D. Y. Patil Institute of Engineering,
Management and Research, I would like to extend our heartfelt gratitude for conducting the Expert
Lecture on “Coding Standards in IT” on 11th September 2021. It was an honor for DYPIEMR to
have you as one of our experts.

Feedback from the audience was extremely positive. All responses were enthusiastic about the
content and the overall quality of the lecture. We believe that the knowledge you have shared with
students will help immensely in their technical development.

We appreciate you for sharing your time, talent, and expertise with us.
Once again, Thank you for joining, and all the best for your professional endeavors.

Yours sincerely

e e

vatekar
HOD Computer
Dept. of Computer Engineering,
DYPIEMR

Letter of Appreciation

Dr. D. Y. Patil Institute of Engineering, Management
and Research, Akurdi, Pune - 44

Department of Computer Engineering

Year : 2020-21 Date: 24/04/2021

Appreciation Letter

Dear Mr. Shubham Kale,

On behalf of Computer Engineenng Department, DYPIEMR, I would like to extend our heartfelt
gratitude for your participation as a speaker on “Higher studies Guidance (M.S.)” on 24 April
2021. It was an honor to have you as our speaker.

We believe the puidance and experience you shared will help immensely to our students
participants in preparation for higher studies.

Thank you once again for sparing some fime for us from your busy schedule. We look forward to
your participation on future events.

Yours sincerely,

Prof. P.P. Shevatekar
H.0.D Computer Engineering
DYPIEMR, Akurdi

Report Prepared by

Mrs. Sandhya Gundre
Mrs. Suvarna Patil

Mrs. Shivganga Gavhane
Mrs. Ketaki Bhoyar
Asst. Prof,

DYPIEMR

3. Industrial Visit report of Computer Engineering department

Dr DY Patil Pratishthan’s DI No.-
Dr. D.Y. Patil Institute of Engineering, Management -
. ACAD/DI/56 A
and Research, Akurdi, Pune
Academic Year: Industrial Visit One Page Report Revision : 00
2021-22 Dated : 20/11/2019
. . Date of
Term = Computer Engineering Department Preparation :
19/12/2021
Activity R [
Activity Industrial Visit
Department Computer Engineering
Virtual Industrial Visit- IIT Bombay Virtual Industry Visits
Title 2021-22 with top companies like Mercedes Benz, Godrej
& Boyce.
Date 19/12/21
Company representatives.
Name of
Mr.Prasanna Gonugatla
Speaker
- o How the companies are working?
Objectives ; - ; :
¢ Which area company is looking more productive
performance?
Mercedes Benz Research & Development India, is the largest
R&D center outside Germany for Mercedes Benz AG. MBRDI
taps into India’s engineering and IT talent to develop innovative
products both locally and globally. Here at MBRDI, with a mix of
interdisciplinary team players, working on the future of
mobility, we focus on topics ranging from computer-aided
design and simulations (CAD and CAE) for powertrain, chassis
and exteriors to embedded systems, telematics and on
Brief developing a host of IT applications and tools. The virtual tour
Description will give you a glimpse of the Digital process chain that enables

digital product development and Manufacturing.

Godrej & Boyce Mfg. Co. Ltd., the flagship company of the
Godrej Group, has played a key role in India's economic history
by driving excellence in design and manufacturing, and
delivering sustainable value for its stakeholders and
communities. Godrej Process Equipment, a strategic business
unit of Godrej & Boyce is one of the leading global

manufacturers of critical Process Equipment for Qil & Gas,
Fertilizer & Chemicals and Power Sector. Having manufactured

1

Dr DY Patil Pratishthan’s DI No.-
Dr.D.Y. Patil Institute of Engineering, Management -
. ACAD/DI/56 A
and Research, Akurdi, Pune CADI
Academic Year: Industrial Visit One Page Report Revision : 00
2021-22 Dated : 20/11/2019
. . Date of
Term = Computer Engineering Department Preparation :
19/12/2021
more than 3000 equipment and catered to more than 400
global customers in 35 countries, Godrej Process Equipment
has world class manufacturing facilities in Mumbai & Dahej.
Students will be able to
o Understand the working of company plants
Outcome and their production strategies.
¢ Information regarding designs.
CO/PQ/PSO PO1, PO6, PO7
Mapping
Student
Benefited SE (A & B),TE(A & B),BE(A & B) Computer 233 students
e LIVE
Bringing the
Glimpses

(Mercedez &
Godrej)

Dr DY Patil Pratishthan’s
Dr. D.Y. Patil Institute of Engineering, Management
and Research, Akurdi, Pune

DI No.:
ACAD/DI/56 A

Academic Year:

Industrial Visit One Page Report

Revision : 00

2021-22 Dated : 20/11/2019
. . Date of
Term = Computer Engineering Department Preparation :
19/12/2021

o LIVE

Leveraging India
,A\
' R&D)

being setup exhibiting a steady growth YoY

A total of multinationals have
0.8 million people

India ranks among top 3 in terms of niche skills such as :

India continues to be a chosen with the number of GICs

who employ closq

provides GIC's an opportunity to engage in strud

Indian GICs are enabling and continue to leverage Dig

in India. GIC's in India today focus on : g

process Chain

Feedback

Dr DY Patil Pratishthan’s
Dr. D.Y. Patil Institute of Engineering, Management
and Research, Akurdi, Pune

DI No.:
ACAD/DI/56 A

Academic Year:

Industrial Visit One Page Report

Revision : 00

2021-22 Dated : 20/11/2019
i i Date of
Term —1| Computer Engineering Department SR -
19/12/2021
L SPECIALISED R
DILLINGER?® voestalpine _"’_‘éﬂ I
J_v‘;?-;‘::l‘/l?—"\ Sij‘ P (‘DKC

WORLD CLASS FACILITY

Dr DY Patil Pratishthan’s
Dr. D.Y. Patil Institute of Engineering, Management
and Research, Akurdi, Pune

DI No.:
ACAD/DI/56 A

Academic Year:

Industrial Visit One Page Report

Revision : 00

2021-22 Dated : 20/11/2019
. . Date of
Term = Computer Engineering Department Preparation :
19/12/2021

MANUFACTURING..... Process flow

DISHED END
CAP FORMING

LONGITUDINAL
m) PLATEROLLING mp SEAM WELDING &mp

PLATE MARKING &

CUTTING NDT

CIRCULAR

STRESS
READINESS FOR FINAL NDT & RELEIVING OF

SHIPMENT @@ LypRO TEST

&

THE EQUIPMENT

NOZZLE ¢
- WE

Dr DY Patil Pratishthan’s

Dr. D.Y. Patil Institute of Engineering, Management

and Research, Akurdi, Pune

DI No.:
ACAD/DI/56 A

Academic Year: Industrial Visit One Page Report

2021-22

Revision : 00
Dated : 20/11/2019

Term =1

Computer Engineering Department

Date of
Preparation :
19/12/2021

Dr. Amol Ramrao Dhakne
Ms.Raiji Ajith Panickar
Mr.Shivaji Vasekar
(Faculty Coordinator)

4. virtual Lab report of

E&TC department

Mrs P.P Shevatekar
(Head of Department)

Dr D Y Patil Pratishthan’s
Dr. D.Y. Patil Institute of Engineering, Management
and Research, Akurdi, Pune

DI No.:
ACAD/DI/56 A

Academic Year: One Page Activity Report
2021-22

Revision : 00
Dated : 20/11/2019

Department of Electronics and Telecommunication

Date of

Term — | Engineering Preparation :
14/9/21
Activity R [
Activity Virtual Lab
Department Electronics and Telecommunication Engineering
Title Virtual Lab on Electrical Circuits
Date 13/9/2021 and 14/09/2021
Name of i
Speaker
Objectives Understand the practical knowledge about Electrical Circuits using
Virtual lab

Practice on Virtual Lab for Electrical Circuits subject was conducted
on 13/9/21 and 14/9/21 at 1.40 pm. Here we performed One

Brief o we calculated and observed
Description))
1. Currents through various given branches.
2. Voltages across the given branches.
3. Power absorbed or delivered by a given component.
Outcome Understood the Ohms Law, KCL and KVL
CO/PQ/PSO col
Mapping
Student
Benefited 23

Glimpses

experiments ie KCL, KVL and Ohms Law through virtual lab, where

Dr D Y Patil Pratishthan’s
Dr. D.Y. Patil Institute of Engineering, Management
and Research, Akurdi, Pune

DI No.:
ACAD/DI/56 A

Academic Year:

One Page Activity Report

Revision : 00

2021-22 Dated : 20/11/2019
Department of Electronics and Telecommunication | Date of
Term — | Engineering Preparation :

resistor

1 = 222 222 mA
Wd = 4444 Vv

R =20 0

P = 987.654 mw

Illllllllllj'

resistor

I = 666.667 MmA
Vd=10VWV
R=150Q

P = 6.667 W

Mrs. Munmun Kakkar
Faculty Coordinator

Dr. Priya Charles
Head of Department

5. Summary of Add on courses of E&TC department of semester |

14/9/21

Dr D Y Patil Pratishthan’s
Dr. D.Y. Patil Institute of Engineering, Management and
Research, Akurdi, Pune

DI No.:
ACAD/DI/57

Academic Year:

Summary of Add on Course

Revision : 00

2021-22 Dated : 20/11/2019
Term =1 Department : Electronics And Telecommunication Date of Preparation
Engineering : 31/12/21
A
Report On

Add On Course

DYP Dr D Y Patil Pratishthan’s BINo.
Dr. D.Y. Patil Institute of Engineering, Management and ACADIDI/57
Research, Akurdi, Pune
Academic Year: Revision : 00
2021-22 Summary of Add on Course Dated : 20/11/2019
Term — | Department : Electronics And Telecommunication Date of Preparatiol
Engineering : 31/12/21
Academic

Year: 2021-22

Sr. Course Title Year/ Branch./ Div. | Duration of Total No. Training Agency
No. Course (Hrs.) | of
Students
1 C/C++ S.E. 30 hrs 79 VAP
Training Coordinator Head of Department
Mr. Lokesh Giripunje Dr. Priya Charles

6. Summary of Add on courses of E&TC department of semester |l

Dr D Y Patil Pratishthan’s
Dr. D.Y. Patil Institute of Engineering, Management and
Research, Akurdi, Pune

DI No.:
ACAD/DI/57

Academic Year:

Summary of Add on Course

Revision : 00

2021-22 Dated : 20/11/2019
Term =i Department : Electronics And Telecommunication Date of Preparation
Engineering . 25/04/22
A
Report On

Add On Course

DYP

DR. D. Y. PATIL

Dr. D.Y. Patil Institute of Engineering, Management and

Dr DY Patil Pratishthan’s

Research, Akurdi, Pune

DI No.:
ACAD/DI/57

Academic Year:

Summary of Add on Course

Revision : 00

2021-22 Dated : 20/11/2019
Term — Il Department : Electronics And Telecommunication Date of Preparation
Engineering . 25/04/22
Academic Year: 2021-22
Sr. Course Title Year/ Branch./ Div. | Duration of Total No. Training Agency
No. Course (Hrs.) | of
Students
1 | Aptitude and T.E. 80 hrs. 25 Campus
GDPI Training Credentials
2 PYTHON S.E. 30 hrs 79 VAP

Training Coordinator
Mr. Lokesh Giripunje

Head of Department

Dr.. Priya Charles

{. Printed lab manual of DBMS(E&TC department) provided to students

DY

DR. D. Y. PATIL

DR. D. Y. PATIL INSTITUTE OF ENGINEERING, MANAGEMENT AND
RESEARCH, AKURDI, PUNE-44

Department of

Electronics & Telecommunication

2021-2022

LAB MANUAL
Subject — Data Base Management Lab
Subject code: 304187
Class—- TE

Program Outcomes

Engineering Graduates will be able to:

1.

10.

11.

12.

Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals and E&TC engineering specialization
to the solution of complex E&TC engineering problems

PO1.a — Apply the knowledge of mathematics

PO1.b — Apply the knowledge of science

PO1.c — Apply the knowledge of engineering fundamentals
Problem Analysis: Identify and analyze complex engineering problems using first principles of mathematics, natural sciences, and E&TC
engineering science

PO2.a — Identify the engineering problem

PO2.b — analyze the engineering problem

PO3.c — reaching the conclusion for the problem
Design /development of Solution: Design solutions for E&TC engineering problems and design system components for real life

PO3.a — Design solution for engineering problems

PO3.b — Design system components for real life solution
Conduct investigations of complex problems: Use Engineering knowledge for analysis and interpretation of data, and synthesis of the
information to provide valid conclusions.

PO4.a — analysis of data

PO4.b — Interpretation of data

POA4.c — synthesis of data for valid conclusion
Modern tool Usage: select and apply appropriate techniques, using IT tools to model E&TC engineering problems with an understanding
of the limitations.

PO5.a — Select and apply appropriate technique

PO5.b — knowledge of various IT tools

PO5.b — Use IT tools to model E&TC engineering problems
The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural
issues and the consequent responsibilities relevant to the professional E&TC engineering practice.

PO6.a — ability to identify the problem

PO6.b — assess the problem

PO6.c —apply the engineering solution
Environment and sustainability: Understand the impact of the E&TC engineering solutions in societal and environmental contexts, and
demonstrate the knowledge of, and need for sustainable development.

PO7.a — understand the impact of E&TC engineering solutions

PO7.b — demonstrate the knowledge for sustainable development
Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the E&TC engineering practice.

PO8.a — have awareness of ethical principles

PO8.b - be committed to professional ethics
Individual and team work: Function effectively as an individual , and as a member or leader in a team

P0O9.a — ability to function effectively as an individual

PO9.b — ability to function as a leader in a team
Communication: Communicate effectively ,comprehend and write effective reports and make effective presentations

PO10.a — ability to communicate effectively

PO10.b —ability to comprehend and write effective reports

PO10.c — ability to make effective presentations
Project management and finance: Have knowledge and understanding of the E&TC engineering and management principles and apply
these to one’s own work, as a member and leader in a team, to manage projects

PO11.a - Ability to have the knowledge and understanding of Engineering and Management principles

PO11.b — apply managerial skills effectively as a leader

PO11.c — Apply the E&TC engineering skills as a team member
Life-long learning: Ability of self-education and understand the technological changes PO12.a — Inculcate the habit of self-learning and
understanding

PO12.b — ability to adapt to technological changes

Vision:
To impart quality education to produce competent E&TC Engineers
Mission:

1. To equip students with strong basics through excellent blend of theory and
practical knowledge

2. To inculcate creativity and innovation through curricular and co-curricular
activities

3. To give the knowledge about all possible areas of E&TC by interacting with
professional world

4. To develop the students with communication skills and ethical standards to
meet the professional needs

PSOs:
The E&TC engineering graduates should be able to

1) Apply principles of Electronics and communication , digital systems, signal
processing, software programming in the field of Embedded,
Telecommunication & Software services for real world applications

2) Comprehend the technological advancements, demonstrate the proficiency in
the usage of engineering tools to analyze and design systems for variety of
applications.

3) Demonstrate professional ethics , apply communication skills for successful
career and higher studies

PEOs:

1) The graduate shall utilize the basic knowledge to address the Engineering

problems

2) The graduate shall attain the qualities of professional leadership with ethical
and moral standards

3) The graduate shall develop their capabilities for lifelong learning throughout
their professional career and higher education

4) The graduate shall explore engineering capabilities through creativity and
innovation.

Course Outcomes:

University | SAR
course course COURSE OUTCOMES
Code code
C304.1 | Ability to learn and understand various DDL queries like create, drop, truncate, DML
queries like insert, select, update, delete. all types of Join and Sub-Query, and to
demonstrate creating and dropping SQL objects like table, view, sequence, index etc.
C304.2 | Ability to learn and understand PL/SQL, to implement all types of Cursors(All types:
Implicit, Explicit, Cursor FOR Loop, Parameterized Cursor), Stored Procedure and
304187 function, for writing Database Triggers(Row level and Statement level triggers,
Before and After Triggers).
C304.3 | Ability to Implement MYSQL/Oracle database connectivity with PHP/python/Java Implement
Database navigation operations (add, delete, edit,) using ODBC/JDBC.
C304.4 | Ability to design and develop database application as a mini project

CO and PO Mapping for DBMS Lab:

6{0) PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PSO1 | PSO2 | PSO3 | PO12
C304.1 | 2 1 1 1 1 1 2 2 2 2 2 2 2
C304.2 | 1 2 2 1 1 1 2 2 2 2 2 2 2
C3043 | 1 1 2 1 1 1 2 2 2 2 1 1 2
C3044 | 1 1 2 1 1 1 2 2 2 2 1 1 2

Savitribai Phule Pune University, Pune

T.E. (Electronics& Telecommunication Engineering) 2019 Course
(With effect from Academic Year 2021-12)

Semester-V

Teaching Examination Scheme and
Scheme Marks Credit
(HoursWeek)
Course
Code Course Name .. |=|s |8 |8 - —_
Sz % | E|E|§E E|E|\E| 2
2|g (3 |5 B = =l =
= (& P ad
304181 | Digital Communication 0y | - - (3070 - - | - [100) 03 - | -] 03
304182 | Electromagnetic Field 03 | - [0 (3070 25| - | -|1253| 03 - |01 04
Theory
304183 | Database Management 03 | -|-|30|70] - - | - 100 03 [- [-] 03
304184 | Microcontrollers 03 | - | - [30(70 - - | - |100) 03 - | -] 03
304185 | Elective -1 03 | - - [30(70 - - | - [100) 03 - | -] 03
304186 | Digital Communication - [02] -] - | - - |30 - F0 - o1 - 01
Lak
I04187 | Databaze hanagemend - |02 - | - | - - - |23 25 - oL -1 M
Lab
304188 | Microcontroller Lab SER 11 R S - 01 -] 30 - o1) - 01
304189 | Elective I Lab - oz -1 - - - 23] - 23 - (o1] -] 01
304190 | Skill Development - oz -] - - 3 - -1323 - (o1] -] 01
304191A| Mandatory Audit Course - - -1 -1 - - - 1-1 - = - -1 -
5 &
Total 15 |10 01 (150|350 50 | 125 (25| 700 - -
Total Credit 15 | 05 (01 21

Guidelines for Student's Lab Journal
» The laboratory assignments/experiments are to be submitted by student in the form of journal.

« Journal consists of Certificate, table of contents, and handwritten write-up for each experiment.
« Each experiment should consist of:
v Assignment No
v Title of Assignment
Date of Performance
Date of Submission
Aims & Objectives
Theory
Description of data used
Results

AN N N N N

Conclusion.

Guidelines for Lab Assessment:

» Continuous assessment of laboratory work is done based on overall performance.

« Each lab assignment/ experiment assessment will assign grade / marks based on parameters with
appropriate weightage.

« Suggested parameters for overall assessment as well as each lab assignment / experiment

assessment include:
v Timely completion.
v Performance.

v Punctuality and neatness.

« The parameters for assessment are to be known to the students at the beginning of the course

INDEX

EXP.

NO.

List of Laboratory Experiments / Assignments

Group A- Database Programming Languages — SQL

1 Study of Open Source Relational Databases: MySQL

5 Design and develop at SQL DDL statements which demonstrate the use of SQL objects such as
Table, View, Index, Sequence and Synonym

3 Design and develop at least 5SQL queries for suitable database application using SQL DML
statements: Insert and Select with operators and functions.

4 Design and develop at least 5 SQL queries for suitable database application using SQL DML
statements: Update and Delete with operators and functions.

5 Design and develop at least 5 SQL queries for suitable database application using SQL DML

statements: all types of Join and Sub-Query.

Group B- Database Programming Languages — PL / SQL

Write a PL/SQL block of code for the following requirements:-

Schema: 1. Borrower (Roll no., Name, Date of Issue, Name of Book, Status) 2. Fine (Roll no,
Date, Amt.) * Accept roll no. & name of book from user. * Check the number of days (from date
of issue), if days are between 15 to 30 then fine amount will be Rs 5per day. ¢ If no. of days>30,
per day fine will be Rs 50 per day & for days less than 30, Rs. 5 per day. * After submitting the]
book, status will change from | to R. « If condition of fine is true, then details will be stored into)
fine table.

Frame the problem statement for writing PL/SQL block in line with above statement.

Cursors: (All types: Implicit, Explicit, Cursor FOR Loop, Parameterized Cursor).

Write a PL/SQL block of code using parameterized Cursor that will merge the data available in
the newly created table N_RollCall with the data available in the table O_RolICall. If the data in
the first table already exist in the second table then that data should be skipped. Frame the
separate problem statement for writing PL/SQL block to implement all types of Cursors in ling
with above statement. The problem statement should clearly state the requirements.

PL/SQL Stored Procedure and Stored Function.

Write a Stored Procedure namely proc_Grade for the categorization of student. If marks scored
by students in examination is <=1500 and marks>=990 then student will be placed in distinction
category if marks scored are between 989 and900 category is first class, if marks 899 and 825
category is Higher Second Class Write a PL/SQL block for using procedure created with above
requirement. Stud Marks(name, total _marks) Result(Roll,Name, Class). Frame the separatg
problem statement for writing PL/SQL Stored Procedure and function, in line with above
statement. The problem statement should clearly state the requirements.

Database Trigger (All Types: Row level and Statement level triggers, Before and After
Triggers):

Write a database trigger on Library table. The System should keep track of the records that are
being updated or deleted. The old value of updated or deleted records should be added in
Library_Audit table. Frame the problem statement for writing Database Triggers of all types, in-
line with above statement. The problem statement should clearly state the requirements.

Group C- Mini Project: Database Project Life Cycle

10

Implement MYSQL/Oracle database connectivity with PHP/python/Java Implement Database
navigation operations (add, delete, edit,) using ODBC/JDBC.

11

Using the database concepts covered in Group A & Group B & connectivity concepts covered in
Group C, students in group are expected to design and develop database application with
following details: Requirement Gathering and Scope finalization Database Analysis and
Design: * Design Entity Relationship Model, Relational Model, Database Normalization ¢
Implementation ¢ Front End : Java/Perl/PHP/Python/Ruby/.net * Backend : MYSQL/Oracle ¢
Database Connectivity : ODBC/JIDBC

Testing: Data Validation Group of students should submit the Project Report which will be
consist of documentation related to different phases of Software Development Life Cycle: Titlg
of the Project, Abstract, Introduction, scope, Requirements, Data Modeling features, Datd
Dictionary, Relational Database Design, Database Normalization, Graphical User Interface,
Source Code, Testing document, Conclusion. Instructor should maintain progress report of mini
project throughout the semester from project group and assign marks as a part of the term work.

Link of the Virtual Lab: http://vlabs.iitb.ac.in/vlabs-dev/labs/dblab/index.php

Learning Resources:

Learning Resources

Text Books:
1. A Silberschatz, HF. Korth and S. Sudarshan , “Database System Concepts™, McGraw Hill, 6 Edition.

2. C.J.Date, A. Kannan, S. Swamynathan “An introduction to Database Systems™, Pearson, 8% Edition.

Reference Books:
1. Martin Gruber, “Understanding SQL”, Sybex Publications.
2. Tvan Bayross, “SQL- PL/SQL”, BPB Publications. 4 Edition.

3. S.K. Singh, “Database Systems: Concepts, Design and Application™, Pearson, Education, 224 Edition.

MOOC/NPTEL Courses:

1. NPTEL Course “Database Management System™
Link of the Course: https://nptel.ac.in/courses/106/106/106106220/

http://vlabs.iitb.ac.in/vlabs-dev/labs/dblab/index.php

Expt. No: 1

1.

Study of Open Source Relational Databases : MySQL

AIM:

Study of Open Source Relational Databases : MySQL

OBJECTIVES:

Study of Open Source Relational Databases : MySQL

Theory:

/ End Users

Database Applications

\

Database Management System

I

Database

MySQL is a Relational Management Database System(RDBMS), and
ships with no GUI tools to administer MySQL databases or manage
data contained within the databases. Users may use the included
Command line tools, or use MySQL "front-ends”, desktop software
and web applications that create and manage MySQL databases, build
database structures, back up data, inspect status, and work with data
records. The official set of MySQL front-end tools, MySQL
workbench is actively developed by Oracle, and is freely available for
use.

Client server system has one or more client process and one or more
server processes,and a client process can send a query to any one
server process.Clients are responsible for user-interface issues,and

servers manages data and execute transaction .Thus, aclient process could run on a personal computer and
send queries to a server to a server running on a mainframe

Introduction to DBMS

A database management system (DBMS) refers to the technology for creating and managing

databases. DBMS is a software tool to organize (create, retrieve, update, and manage) data in a

database.

Component of DBMS:

Users: Users may be of any kind such as DB administrator, System developer, or database

USErS.

Database application: Database application may be Departmental, Personal, organization's

and / or Internal.

DBMS: Software that allows users to create and manipulate database access,

Database: Collection of logical data as a single unit.

INTRODUCTION TO SQL:

Pronounced as SEQUEL.: Structured English QUERY Language

YVVVVVVVYVYVYVYY

A\

Pure non-procedural query language

Designed and developed by IBM, Implemented by Oracle

1978 System/R IBM- 1st Relational DBMS

1979 Oracle and Ingres

1982 SQL/DS and DB2 IBM

Accepted by both ANSI + 1SO as Standard Query Language for any RDBMS
SQL86 (SQL1) : first by ANSI and ratified by 1SO (SQL-87), minor revision on 89
(SQL-89)

SQL92 (SQL2) : major revision

SQL99 (SQL3) : add recursive query, trigger, some OO features, and non-scholar

type

SQL2003 : XML, Window
functions, and sequences o:
(Not free)

Supports all the three sublanguages
of DBMS: DDL, DML,
DCL

A o Connaction e v Uit aenr
1 Tt vuta Craste e 1R Moded) Manage mport | Export

g 1 S0 s _ Create (1R Mode From Lxsting Dutabase g9 Mamaon Secumty

-
|

MYSQL Installation Process:

Installation Process —

Step 1: double click on this first software file
1.mysql-essential-5.1.67-win32.msi

Use following credentials:

port no: 3306

username: root

password: root

hostname: localhost

Step 2: After installation of mysqgl essential,
Double click this second software file
2.mysql-gui-tools-5.0-r17-win32.msi

Step 3: After installation of mysql-gui-tools
Double click this third software file
3.mysql-workbench-gpl-5.2.44-win32.msi

Data Definition in SQL
CREATE, ALTER and DROP

DATA TYPES

Numeric: NUMBER, NUMBER(s,p), INTEGER, INT, FLOAT, DECIMAL
Character: CHAR(n), VARCHAR(n), VARCHAR2(n), CHAR VARYING(n)
Bit String: BLOB, CLOB

Boolean: true, false, and null

YV VYV

Components of SQL.:
1) DDL (Data Definition Language)

-This SQL syntax is used to create, modify and delete database structures.DDL syntax cannot be
applied to the manipulation of business data.DDL is almost always used by the database administrator, a
database schema implementer or an application developer. Every DDL command implicitly issues a
COMMIT making permanent all changes in the database.

Examples:
o CREATE: Create objects in database schema.
e ALTER: Alters the structure of objects that exist within the database schema.
o DROP: Drops objects that exist within database schema.
¢ TRUNCATE: Removes all records from a table, including all space allocated for the records.
¢ COMMENT:Adds comments ,generally used for proper documentation of a database schema.
2)DML (Data Manipulation Language)
-1t is the SQL syntax that allows manipulating data within database tables.

Examples: INSERT, UPDATE, DELETE.

3)DCL (Data Control Language)

-1t controls access to the database and table data. Occasionally DCL statements are grouped
with DML statements.

Examples:

COMMIT,SAVEPOINT,ROLLBACK,SET TRANSACTION
e The commands used in MySQL are:

1) CREATE :
The CREATE command is used to create a database or create a table in a particular database.
i) FOR CREATING A DATABASE :
Syntax:
create database database name; /ffor creating a database
Example:
create database Student_info //Student_info database is created

ii)FOR CREATINGA TABLE:
The table creation command requires:
Name of the table
Names of fields

Definitions for each field
Syntax:
CREATE TABLE table_name (column_namel column_type, column_name2 column_type,.......)i

Example:
create table Student(Roll_no tinyint PRIMARY KEY,Fname varchar(20) NOT NULL,Lname
varchar(20),Mob_no char(10));

2)ALTER:MySQLALTER command is used to change a name of your table, any table field or if you want
to add or delete an existing column in a table.

Syntax:

i)DROP- Used to delete a particular column.

Syntax: mysql> ALTER TABLE table_name DROP i; //iis the row you want to delete.

ii)ADD-Used to add a particular column to an existing table.
Syntax:mysgl> ALTER TABLE table_name ADD i int;

iii)CHANGE- Used to change a column's definition, use MODIFY or CHANGE clause along with ALTER
command. After the CHANGE keyword, you name the column you want to change, then specify the new
definition, which includes the new name

Syntax:
For example, to change column ¢ from CHAR(1) to CHAR(10), do this:
mysql> ALTER TABLE table_name MODIFY ¢ CHAR(10);

mysql> ALTER TABLE testalter_tbl CHANGE i j BIGINT;

3)DELETE:used to delete a record from any MySQL table, then you can use SQL command DELETE
FROM.

Syntax:
DELETE FROM table_name [WHERE Clause]

INDEX: Indexing is the way of keeping table column data sorted so that searching and locating data
consumes less time.Hence indexes essentially improve the speed at which records can be located and
retrieved from a table.

Types of Index:
SIMPLE INDEX: An index created on single column data is called Simple index.
COMPOSITE INDEX: An index created on multiple column data is called a composite index.

1)CREATE INDEX: A database index is a data structure that improves the speed of operations in a table.
Indexes can be created using one or more columns, providing the basis for both rapid random lookups and
efficient ordering of access to records.

Syntax:

CREATE UNIQUE INDEX index_name ON table_name (columnl, column2,...);

2)DELETE INDEX: Used to delete any index.
Syntax:
mysql> ALTER TABLE table_name DROP INDEX (c);

VIEWS: A view is a table whoes rows are not explicitly stored in the database but are computed as needed
from a view definition. To reduce redundant data to the minimum possible, MySQL allows creation of an
object called a view .A view is mapped to a SELECT statement. This technique offers a simple, effective
way of hiding columns of a table.

S.name,S.sid,S.cid

FROM stud S,Enrolled E

1)CREATE VIEW: Used to create a view.

Syntax:
mysql> CREATE VIEW database_name.view_name AS SELECT * FROM table_name;
Example:
CREATE VIEW stud_info(hame,sid,course)
AS SELECT S.name,S.sid,S.cid

FROM stud S,Enrolled EWHERE S.sid AND E.grade="B'

2)DELETE VIEW: DROP view removes one or more Views.
Syntax:
mysql>DROP view viewname;
Example:
DROP view stud_info;

Conclusion:

Thus we studied Open Source Relational Databases: MySQL successfully.

Expt. No: 2 Design and Develop SQL DDL statements which demonstrate the use
of SQL objects such as Table, View, Index, Sequence, Synonym

AIM:

Study of Design and Develop SQL DDL statements which demonstrate the use of SQL objects such
as Table, View, Index, Sequence, Synonym

OBJECTIVES:

Study of Design and Develop SQL DDL statements which demonstrate the use of SQL objects such
as Table, View, Index, Sequence, Synonym

Problem Statement:
(Create following tables with constraints, alter table, insert, drop table , rename table, view, index,
synonym, sequence/ AUTO_INCREMENT)

Account(Acc_no, branch_name,balance)
branch(branch_name,branch_city,assets)
customer(cust_name,cust_street,cust_city)
Depositor(cust_name,acc_no)
Loan(loan_no,branch_name,amount)
Borrower(cust_name,loan_no)

Theory:

A schema is the collection of multiple database objects, which are known as schema objects. These objects
have direct access by their owner schema. Below table lists the schema objects.

e Table - to store data

e View -to project data in a desired format from one or more tables

e Sequence - to generate numeric values

e Index - to improve performance of queries on the tables

e Synonym - alternative name of an object
One of the first steps in creating a database is to create the tables that will store an organization's
data.Database design involves identifying system user requirements for various organizational systems such
as order entry, inventory management, and accounts receivable. Regardless of database size and complexity,
each database is comprised of tables.

Table of Contents
1. DDL
2. DML
3. DCL
4, TCL

DDL
DDL is short name of Data Definition Language, which deals with database schemas and descriptions, of
how the data should reside in the database.
o CREATE - to create a database and its objects like (table, index, views, store procedure, function,
and triggers)

https://www.w3schools.in/mysql/ddl-dml-dcl/#DDL
https://www.w3schools.in/mysql/ddl-dml-dcl/#DML
https://www.w3schools.in/mysql/ddl-dml-dcl/#DCL
https://www.w3schools.in/mysql/ddl-dml-dcl/#TCL
https://www.w3schools.in/mysql/php-mysql-create/

e ALTER - alters the structure of the existing database

e DROP - delete objects from the database

e TRUNCATE - remove all records from a table, including all spaces allocated for the records are

removed

e COMMENT - add comments to the data dictionary

e RENAME - rename an object
DML
DML is short name of Data Manipulation Language which deals with data manipulation and includes most
common SQL statements such SELECT, INSERT, UPDATE, DELETE, etc., and it is used to store, modify,
retrieve, delete and update data in a database.

o SELECT -retrieve data from a database

e INSERT - insert data into a table

e UPDATE - updates existing data within a table

o DELETE - Delete all records from a database table

e MERGE - UPSERT operation (insert or update)

e CALL - call a PL/SQL or Java subprogram

o EXPLAIN PLAN - interpretation of the data access path

e LOCK TABLE - concurrency Control
DCL
DCL is short name of Data Control Language which includes commands such as GRANT and mostly
concerned with rights, permissions and other controls of the database system.

e GRANT - allow users access privileges to the database

e REVOKE - withdraw users access privileges given by using the GRANT command
TCL
TCL is short name of Transaction Control Language which deals with a transaction within a database.

e COMMIT - commits a Transaction

e ROLLBACK - rollback a transaction in case of any error occurs

e SAVEPOINT - to rollback the transaction making points within groups

e SET TRANSACTION - specify characteristics of the transaction

SQL Statements For Tables

char(n). Fixed lengthcharacter string, withuser-specified length n.

varchar(n). Variable length character strings, with user-specified maximumlengthn.

int. Integer (afinite subset oftheintegersthatis machine-dependert).

smallint Smallinteger (a machine-dependentsubsetof the integer domaintype).

numeric(p,d). Fixedpoint number, with user-specifiedprecisionof pdigits, withn digitstothe right of
decimalpoint.

real, double precision. Floatingpointanddouble-precisionfloatingpoint numbers, withmachine-dependent precision.

float(n). Floatingpointnumber,withuser-specifiedprecisionofatleastndigits.

Constraints

Constraints are the set of rules defined in Oracle tables to ensure data integrity.These rules are enforced
placed for each column or set of columns.Whenever the table participates in data action, these rules are
validated and raise exception upon violation. The available constraint types are NOT NULL, Primary Key,
Unique, Check, and Foreign Key.

The below syntax can be used to impose constraint at the column level.

Syntax:

column [data type] [CONSTRAINT constraint_name] constraint_type

https://www.w3schools.in/mysql/php-mysql-select/
https://www.w3schools.in/mysql/php-mysql-insert/
https://www.w3schools.in/mysql/php-mysql-update/
https://www.w3schools.in/mysql/php-mysql-delete/

All constraints except NOT NULL, can also be defined at the table level. Composite constraints can only be
specified at the table level.

NOT NULL Constraint

A NOT NULL constraint means that a data row must have a value for the column specified as NOT NULL.If
a column is specified as NOT NULL,the Oracle RDBMS will not allow rows to be stored to the employee
table that violate this constraint.It can only be defined at column level, and not at the table level.

Syntax:

COLUMN [data type] [NOT NULL]

UNIQUE constraint

Sometimes it is necessary to enforce uniqueness for a column value that is not a primary key column.The
UNIQUE constraint can be used to enforce this rule and Oracle will reject any rows that violate the unique
constraint.Unigue constraint ensures that the column values are distinct, without any duplicates.
Syntax:
Column Level:
COLUMN [data type] [CONSTRAINT <name>] [UNIQUE]
Table Level: CONSTRAINT [constraint name] UNIQUE (column name)
Note: Oracle internally creates unique index to prevent duplication in the column values.Indexes would be
discussed later in PL/SQL.
CREATE TABLE TEST
(e

NAME VARCHAR2(20)

CONSTRAINT TEST_NAME_UK UNIQUE,
o)

In case of composite unique key, it must be defined at table level as below.

CREATE TABLE TEST
(...,
NAME VARCHAR2(20),
STD VARCHAR2(20) ,
CONSTRAINT TEST_NAME_UK UNIQUE (NAME, STD)

);
Primary Key

Each table must normally contain a column or set of columns that uniquely identifies rows of data that are
stored in the table.This column or set of columns is referred to as the primary key.Most tables have a single
column as the primary key.Primary key columns are restricted against NULLs and duplicate values.
Points to be noted -

e Atable can have only one primary key.

e Multiple columns can be clubbed under a composite primary key.

e Oracle internally creates unique index to prevent duplication in the column values.Indexes would be

discussed later in PL/SQL.

Syntax:

Column level:

COLUMN [data type] [CONSTRAINT <constraint name> PRIMARY KEY]
Table level:

CONSTRAINT [constraint name] PRIMARY KEY [column (S)]
The following example shows how to use PRIMARY KEY constraint at column level.
CREATE TABLE TEST (ID NUMBER CONSTRAINT TEST_PK PRIMARY KEY, ...);

The following example shows how to define composite primary key using PRIMARY KEY constraint at the
table level.
CREATE TABLE TEST (..., CONSTRAINT TEST_PK PRIMARY KEY (ID));

Foreign Key

When two tables share the parent child relationship based on specific column, the joining column in
the child table is known as Foreign Key. This property of corresponding column in the parent table is known
as Referential integrity. Foreign Key column values in the child table can either be null or must be the
existing values of the parent table. Please note that only primary key columns of the referenced table are
eligible to enforce referential integrity.

If a foreign key is defined on the column in child table then Oracle does not allow the parent row to be
deleted, if it contains any child rows. However, if ON DELETE CASCADE option is given at the time of
defining foreign key, Oracle deletes all child rows while parent row is being deleted. Similarly, ON DELETE
SET NULL indicates that when a row in the parent table is deleted, the foreign key values are set to null.
Syntax:

Column Level:
COLUMN [data type] [CONSTRAINT] [constraint name] [REFERENCES] [table name (column name)]
Table level:

CONSTRAINT [constraint name] [FOREIGN KEY (foreign key column name) REFERENCES] [referenced
table name (referenced column name)]

The following example shows how to use FOREIGN KEY constraint at column level.
CREATE TABLE TEST (ccode varchar2(5) CONSTRAINT TEST_FK REFERENCES
PARENT_TEST(ccode), ...);

Usage of ON DELETE CASCADE clause
CREATE TABLE TEST (ccode varchar2(5) CONSTRAINT TEST_FK REFERENCES PARENT_TEST
(ccode) ON DELETE CASCADE, ...);

Check constraint

Sometimes the data values stored in a specific column must fall within some acceptable range of values. A
CHECK constraint requires that the specified check condition is either true or unknown for each row stored
in the table. Check constraint allows to impose a conditional rule on a column, which must be validated
before data is

inserted into the column. The condition must not contain a sub query or pseudo column CURRVAL
NEXTVAL, LEVEL, ROWNUM, or SYSDATE.

Oracle allows a single column to have more than one CHECK constraint. In fact, there is no practical limit to
the number of CHECK constraints that can be defined for a column.

Syntax:

Column level:

COLUMN [data type] CONSTRAINT [name] [CHECK (condition)]

Table level:
CONSTRAINT [name] CHECK (condition)

The following example shows how to use CHECK constraint at column level.
CREATE TABLE TEST (..., GRADE char (1) CONSTRAINT TEST CHK CHECK (upper (GRADE) in
(lAl,lBl,lCl))' .);

The following example shows how to use CHECK constraint at table level.
CREATE TABLE TEST (..., CONSTRAINT TEST_CHK CHECK (stdate < = enddate),);

create database Student;
show databases;

use Student;

drop database Student;

DDL : create, desc, alter, drop, rename,

create table <table_name> (column_namel dat_type(size) [constraint], column_name2 data_type(size)
[constraint],. ..column_nameN dat_type(size) [constraint]);

create table Student_info(RolINO integer(10) NOT NULL, Name varchar(30), MobNo integer(10));
desc student_info;

show tables;

drop table student_info;

alter table student_info add(emailid varchar(30));

alter table student_info modify(emailid char(10));

rename Student_info to Stud_data;

create index idx on student_info(rollno);

alter table student_info drop index idx;

index::

show databases;
use student;

show tables;

desc student_info;

Create table using subguery
A table can be created from an existing table in the database using a subquery option. It copies the table

structure as well as the data from the table. Data can also be copied based on conditions. The column data
type definitions including the explicitly imposed NOT NULL constraints are copied into the new table.

The below CTAS script creates a new table EMP_BACKUP. Employee data of department 20 gets copied
into the new table

CREATE TABLE EMP_BACKUP
AS

SELECT * FROM EMP_TEST
WHERE department_id=20;

SOL CREATE INDEX Statement
The CREATE INDEX statement is used to create indexes in tables.

Indexes are used to retrieve data from the database very fast. The users cannot see the indexes, they are just
used to speed up searches/queries.

Note: Updating a table with indexes takes more time than updating a table without (because the indexes also
need an update).
So, only create indexes on columns that will be frequently searched against.

CREATE INDEX Syntax

Creates an index on a table. Duplicate values are allowed:

CREATE INDEX index_name
ON table_name (columnl, column, ...);

Example:
create index roll_no on student_info(rollno);
alter table student_info drop index roll_no;

CREATE UNIQUE INDEX Syntax
Creates a unique index on a table. Duplicate values are not allowed:

CREATE UNIQUE INDEX index_name
ON table_name (columnl, column2, ...);

Note: The syntax for creating indexes varies among different databases. Therefore: Check the syntax for
creating indexes in your database.
CREATE INDEX Example

The SQL statement below creates an index named "idx_lastname" on the "LastName" column in the
"Persons" table:

CREATE INDEX idx_lastname

ON Persons (LastName);

If you want to create an index on a combination of columns, you can list the column names within the
parentheses, separated by commas:

CREATE INDEX idx_pname

ON Persons (LastName, FirstName);

DROP INDEX Statement

The DROP INDEX statement is used to delete an index in a table.

MS Access:
DROP INDEX index_name ON table_name;

SQL Server:
DROP INDEX table_name.index_name;

DB2/Oracle:
DROP INDEX index_name;

MySQL.:
ALTER TABLE table_name
DROP INDEX index_name;

SQOL Seqguence

Sequence is a feature supported by some database systems to produce unique values on demand. Some
DBMS like MySQL supports AUTO_INCREMENT in place of Sequence. AUTO_INCREMENT is
applied on columns, it automatically increments the column value by 1 each time a new record is entered into
the table. Sequence is also some what similar to AUTO_INCREMENT but it has some extra features.

create table Student info(RolINO integer(10) Primary key AUTO_INCREMENT, Name varchar(30),
MobNo integer(10));

insert into Student_info (Name, MobNo) values (‘Amol’, 9049417616);
insert into Student_info (Name, MobNo) values (‘Amol’, 9049417616);

Creating Sequence
Syntax to create sequences is,

CREATE Sequence sequence-name
start with initial-value

increment by increment-value
maxvalue maximum-value
cyclejnocycle

Initial-value specifies the starting value of the Sequence, increment-value is the value by which sequence
will be incremented and maxvalue specifies the maximum value until which sequence will increment itself.
Cycle specifies that if the maximum value exceeds the set limit, sequence will restart its cycle from the
beginning. No cycle specifies that if sequence exceeds maxvalue an error will be thrown.

Example to create Sequence
The sequence query is following
CREATE Sequence seq_1

start with 1

increment by 1

maxvalue 999

cycle ;

Example to use Sequence

The class table,

1D NAME
1 abhi

2 adam

4 alex

The sql query will be,
INSERT into class value(seq_1.nextval,'anu’);

Result table will look like,

ID NAME
1 abhi

2 adam

4 alex

1 anu

Once you use nextval the sequence will increment even if you don't Insert any record into the table.

CREATE SYNONYM:

Examples To define the synonym offices for the table locations in the schema hr, issue the following
statement:

CREATE SYNONYM offices
FOR hr.locations;

To create a PUBLIC synonym for the employees table in the schema hr on the remote database, you could
issue the following statement:

CREATE PUBLIC SYNONYM emp_table

FOR hr.employees@remote.us.oracle.com;
A synonym may have the same name as the underlying object, provided the underlying object is contained in
another schema.

Oracle Database Resolution of Synonyms: Example Oracle Database attempts to resolve references to
objects at the schema level before resolving them at the PUBLIC synonym level. For example, the schemas
oe and sh both

contain tables named customers. In the next example, user SYSTEM creates a PUBLIC synonym named
customers for customers:

CREATE PUBLIC SYNONYM customers FOR oe.customers;

If the user sh then issues the following statement, then the database returns the count of rows from
sh.customers:

SELECT COUNT(*) FROM customers;

To retrieve the count of rows from oe’s.customers, the user sh must preface customers with the schema
name. (The user must have select permission on oe’s.customers as well.)

SELECT COUNT(*) FROM oe.customers;

If the user hr's schema does not contain an object named customers, and if hr has select permission on
.customers, then hr can access the customers table in oe's schema by using the public synonym customers:

SELECT COUNT(*) FROM customers;
SQL CREATE VIEW Statement
In SQL, a view is a virtual table based on the result-set of an SQL statement.

A view contains rows and columns, just like a real table. The fields in a view are fields from one or more real
tables in the database.

You can add SQL functions, WHERE, and JOIN statements to a view and present the data as if the data were
coming from one single table.

CREATE VIEW Syntax

CREATE VIEW view_name AS

SELECT columnl, column2, ...

FROM table_name

WHERE condition;

Note: A view always shows up-to-date data! The database engine recreates the data, using the view's SQL
statement, every time a user queries a view.

SQL CREATE VIEW Examples

If you have the Northwind database you can see that it has several views installed by default.

The view "Current Product List" lists all active products (products that are not discontinued) from the
"Products" table. The view is created with the following SQL.:

CREATE VIEW [Current Product List] AS

SELECT ProductID, ProductName

FROM Products

WHERE Discontinued = No;

Then, we can query the view as follows:
SELECT * FROM [Current Product List];

Another view in the Northwind sample database selects every product in the "Products” table with a unit
price higher than the average unit price:
CREATE VIEW [Products Above Average Price] AS

SELECT ProductName, UnitPrice
FROM Products
WHERE UnitPrice > (SELECT AVG(UnitPrice) FROM Products);

We can query the view above as follows:
SELECT * FROM [Products Above Average Price];

Another view in the Northwind database calculates the total sale for each category in 1997. Note that this
view selects its data from another view called "Product Sales for 1997":

CREATE VIEW [Category Sales For 1997] AS

SELECT DISTINCT CategoryName, Sum(ProductSales) AS CategorySales

FROM [Product Sales for 1997]

GROUP BY CategoryName;

We can query the view above as follows:
SELECT * FROM [Category Sales For 1997];

We can also add a condition to the query. Let's see the total sale only for the category "Beverages":
SELECT * FROM [Category Sales For 1997]

WHERE CategoryName = 'Beverages'’;

SQL Updating a View

You can update a view by using the following syntax:
SQL CREATE OR REPLACE VIEW Syntax
CREATE OR REPLACE VIEW view_name AS
SELECT columnil, column2, ...

FROM table_name

WHERE condition;

Now we want to add the "Category" column to the "Current Product List" view. We will update the view
with the following SQL.:

CREATE OR REPLACE VIEW [Current Product List] AS

SELECT ProductlD, ProductName, Category

FROM Products

WHERE Discontinued = No;

SQL Dropping a View

You can delete a view with the DROP VIEW command.
SQL DROP VIEW Syntax
DROP VIEW view_name;

Examples:
insert into student_info values(3,'amol',2154455,"abc@gmai’);

insert into student_info values(1,'vijay',21543255,'asvs@gmai');
select * from student_info;

view::

create view myview as select rollno,name from student_info;

select * from myview;

create view myview?2 as select rollno,name from student_info where rollno>1;

(Create following tables with constraints, alter table, insert, drop table , rename table, view, index,
synonym, sequence/ AUTO_INCREMENT)

Account(Acc_no, branch_name,balance)
branch(branch_name,branch_city,assets)
customer(cust_name,cust_street,cust_city)
Depositor(cust_name,acc_no)
Loan(loan_no,branch_name,amount)
Borrower(cust_name,loan_no)

Solve following gueries:

Q1.Create Depositor table with foreign key with on delete cascade constraint on columns
cust_name and acc_no.

Q2. Create Borrower table with foreign key with on delete cascade constraint on columns
cust_name,loan_no.

Q3. Create Account table with primary key and AUTO_INCREMENT constraint on Acc_no
column

Q4. Create Loan table with primary key and AUTO_INCREMENT constraint on loan_no column.
Q5. Create Customer table with primary key constraint on cust_name column.

Q6. Create View on Account table and Loan Table.

Q7. Insert following Data into above tables

Q.8. Create synonym for customer table as cust.

Q.9. Create sequence acc_seq and use in Account table for acc_no column.

Q.10 Insert following data into all above tables.

**************************P ro b I em Stateme nts***********************

Q1. Ql.Create Depositor table with foreign key with on delete cascade constraint on columns
cust_name and acc_no.

Column Level:

SQL> create table depositor (cust_name varchar(20) CONSTRAINT FK_1 REFRENECS
customer(cust_name) ON DELETE CASCADE , acc_no integer(10) CONSTRAINT FK_2
REFRENECS account(acc_no) ON DELETE CASCADE);

Q2. Create Borrower table with foreign key with on delete cascade constraint on columns
cust_name,loan_no

Table level :

SQL> create table borrower (cust_name varchar(20), loan_no integer(10) , CONSTRAINT FK_1
FOREIGN KEY (cust_name) REFRENECS customer(cust_name) ON DELETE CASCADE,
CONSTRAINT FK 2 FOREIGN KEY (loan_no) FK2 REFRENECS loan(loan_no) ON DELETE
CASCADE);

Q3. Create Account table with primary key and AUTO_INCREMENT constraint on Acc_no
column

SQL> create table account (acc_no integer(10) primary key AUTO_INCREMENT, branch_name
varchar(20), balance integer(10));

Q4. Create Loan table with primary key and AUTO_INCREMENT constraint on loan_no column.

SQL> create table loan (loan_no integer(10) primary key AUTO_INCREMENT, branch_name
varchar(20), amount integer(10));

Q5. Create Customer table with primary key constraint on cust_name column.
SQL> create table customer (cust_name varchar(20) primary key, cust_street varchar(20), city
varchar(20));

Q6. Create View on Account table and Loan Table.
SQL> create view acl AS (select acc_no, balance from account);

SQL> create view In1 AS (select loan_no, amount from loan);

Q.7. Create synonym for customer table as cust.

SQL> create public synonym cust2 for customerl;
Synonym created.

Q.8. Create sequence acc_seq and use in Account table for acc_no column.

CREATE Sequence seq_1 start with 1 increment by 1 maxvalue 100000 no cycle ;

Q.9 Insert following data into all above tables.

kkkhkhkhkhkkhkhkhkhhhkhhhhhhhhhkhhhhhhhhkikix Table Structu re khkhkkhhhhkhkhkhkhkhkkhikihhhhkhkhkhkhhiiiiiiiixx

create table Account(Acc_no, branch_name,balance) :

SQL> select * from account;

ACC_NO BRANCH_NAME BALANCE
1001 Akurdi 15000
1002 Nigdi 11000
1003 Chinchwad 20000
1004 Wakad 10000
1005 Akurdi 14000
1006 Nigdi 17000

6 rows selected.
Create table branch(branch_name,branch_city,assets) :

SQL> select * from branch;

BRANCH_NAME BRANCH_CITY ASSETS
Akurdi Pune 200000
Nigdi Pimpri_chinchwad 300000
Wakad Pune 100000
Chinchwad Pimpri_chinchwad 400000
Sangvi Pune 230000

create table customer(cust_name,cust_street,cust_city) :

SQL> select * from customerl,

CUST_NAME CUST_STREET CUST_CITY
Rutuja JM road Pune

Alka Senapati road Pune

Samiksha Savedi road Pimpri_chinchwad
Trupti Lakshmi road Pune

Mahima Pipeline road Pimpri_chinchwad
Ayushi FC road pune

Priti Camp road Pimri_chinchwad

7 rows selected.
Create table Depositor(cust_name,acc_no):

SQL> select * from depositer;

CUST_NAMEACC_NO

Rutuja 1005
Trupti 1002
Samiksha 1004

Loan(loan_no,branch_name,amount) :
SQL> select * from loan;

LOAN_NO BRANCH_NAME AMMOUNT

2001 Akurdi 2000
2002 Nigdi 1200
2003 Akurdi 1400
2004 Wakad 1350
2005 Chinchwad 1490
2006 Akurdi 12300
2007 Akurdi 14000

7 rows selected.

Create table borrower(cust_name,loan_no) :

SQL> select * from borrower;

CUST_NAME LOAN_NO
Mahima 2005
Trupti 2002
Rutuja 2004
Ayushi 2006
Priti 2007
Conclusion:

Thus we successfully implemented Table, View, Index, Sequence, Synonym MySQL queries.

Expt. No: 3 &4 Design and develop at least 5SQL queries for suitable database application
using SQL DML statements: Insert and Select with operators and functions,
Update and Delete with operators and functions.

AlM:
To Design at least 10 SQL queries for suitable database application using SQL DML statements: Insert, Select,
Update, Delete with operators, functions, and set operator.

OBJECTIVES:
To Study and Design SQL queries for suitable database application using SQL DML statements: Insert,
Select, Update, Delete with operators, functions, and set operator.

Problem Statement:

(Insert, Select, Update, Delete, operators, functions, setoperator, all constraints, view, index,
synonym, sequence)

Account(Acc_no, branch_name,balance)

branch(branch_name,branch_city,assets)

customer(cust_name,cust_street,cust_city)

Depositor(cust_name,acc_no)

Loan(loan_no,branch_name,amount)

Borrower(cust_name,loan_no)

Input: insert Data into above tables and fire queries on databases;
Theory:
Set Operators:

The set operations union, intersect, and except operate on relations and correspond to the relational
algebra operations U, N, —.

Each of the above operations automatically eliminates duplicates; to retain all duplicates use the
corresponding multiset versions union all, intersect all and except all.

Suppose a tuple occurs m times in r and n times in s, then, it occurs:
m + ntimes inr union all s

min(m,n) times in r intersect all s

max(0, m—n) times in r except all s

Aaggregate Functions:

These functions operate on the multiset of values of a column of a relation, and return a value
avg: average value
min: minimum value
max: maximum value
sum: sum of values
count: number of values

Solve following queries:

QL. Find the names of all branches in loan relation.

Q2. Find all loan numbers for loans made at Akurdi Branch with loan amount > 12000.

Q3. Find all customers who have a loan from bank. Find their names,loan_no and loan
amount.

Q4. List all customers in alphabetical order who have loan from Akurdi branch.

Q5. Find all customers who have an account or loan or both at bank.

Q6. Find all customers who have both account and loan at bank.

Q7. Find all customer who have account but no loan at the bank.

Q8. Find average account balance at Akurdi branch.

Q0. Find the average account balance at each branch

Q10. Find no. of depositors at each branch.

Q11. Find the branches where average account balance > 12000.

Q12. Find number of tuples in customer relation.

Q13. Calculate total loan amount given by bank.

Q14. Delete all loans with loan amount between 1300 and 1500.

Q15. Delete all tuples at every branch located in Nigdi.

Q.16. Create synonym for customer table as cust.
Q.17. Create sequence roll_seq and use in student table for roll_no column.

Create above tables with appropriate constraints like primary key, foreign key, check constrains, not
null etc.

*hkkhkkkkhkkhkkhkkkkhkhkkkhkikhkhihkhkhhhkhkiikhkikik Table Structu re *kkkhkkkhkhkkkhhkhkkikhkkhikhkkihkhkkihkkhihkkihhihiiikk

create table Account(Acc_no, branch_name,balance) :

SQL> select * from account;

ACC_NO BRANCH_NAME BALANCE
1001 Akurdi 15000
1002 Nigdi 11000
1003 Chinchwad 20000
1004 Wakad 10000
1005 Akurdi 14000
1006 Nigdi 17000

6 rows selected.

Create table branch(branch_name,branch_city,assets) :

SQL> select * from branch;

BRANCH_NAME BRANCH_CITY ASSETS
Akurdi Pune 200000
Nigdi Pimpri_chinchwad 300000
Wakad Pune 100000
Chinchwad Pimpri_chinchwad 400000
Sangvi Pune 230000

create table customer(cust_name,cust_street,cust_city) :

SQL> select * from customerl,

CUST_NAME CUST_STREET CUST_CITY
Rutuja JM road Pune

Alka Senapati road Pune

Samiksha Savedi road Pimpri_chinchwad
Trupti Lakshmi road Pune

Mahima Pipeline road Pimpri_chinchwad
Ayushi FC road pune

Priti Camp road Pimri_chinchwad

7 rows selected.
Create table Depositor(cust_name,acc_no):

SQL> select * from depositer;

CUST_NAMEACC_NO

Rutuja 1005
Trupti 1002
Samiksha 1004

Loan(loan_no,branch_name,amount) :

SQL> select * from loan;

LOAN_NO BRANCH_NAME AMMOUNT
2001 Akurdi 2000

2002 Nigdi 1200

2003 Akurdi 1400

2004 Wakad 1350

2005 Chinchwad 1490

2006 Akurdi 12300

2007 Akurdi 14000

7 rows selected.

Create table borrower(cust_name,loan_no) :

SQL> select * from borrower;

CUST_NAME LOAN_NO
Mahima 2005
Trupti 2002
Rutuja 2004
Ayushi 2006
Priti 2007

**************************P rob Iem Stateme nts***********************

Q1. Find the names of all branches in loan relation.
SQL>select branch_name from loan;

BRANCH_NAME

Akurdi
Nigdi
Akurdi
Wakad
Chinchwad
Akurdi
Akurdi

7 rows selected.

Q2. Find all loan numbers for loans made at Akurdi Branch with loan amount >12000.
SQL> select loan_no from loan where branch_name="Akurdi' and amount>12000;

LOAN_NO

Q3. Find all customers who have a loan from bank. Find their names, loan_no and loan
amount.

SQL> select b.cust_name,b.loan_no,l.amount from borrower b inner join loan | on
b.loan_no=l.loan_no;

CUST_NAME LOAN_NO AMOUNT
Trupti 2002 1200
Rutuja 2004 1350
Mahima 2005 1490
Ayushi 2006 12300

Priti 2007 14000

Q4. List all customers in alphabetical order who have loan from Akurdi branch.

SQL> select b.cust_name from borrower b inner join loan | on b.loan_no=I.loan_no
where l.branch_name="Akurdi‘order by b.cust_name;

CUST_NAME

Q5. Find all customers who have an account or loan or both at bank.
SQL>select cust_name from depositer union select cust_name from borrower;

CUST_NAME
Ayushi
MahimaPriti
Rutuja
Samiksha
Trupti

6 rows selected.

Q6. Find all customers who have both account and loan at bank.

SQL> select cust_name from depositer intersect select cust_name from borrower;

CUST_NAME

Q7. Find all customer who have account but no loan at the bank.
SQL> select cust_name from depositer minus select cust_name from borrower;

CUST_NAME

Samiksha
Q8. Find average account balance at Akurdi branch.
SQL> select avg(balance) from account where branch_name="Akurdi’;

AVG(BALANCE)

Q9. Find the average account balance at each branch
SQL> select branch_name,avg(balance) from account group by branch_name;

BRANCH_NAME AVG(BALANCE)
Chinchwad 20000
Nigdi 14000
Wakad 10000
Akurdi 14500

10. Find no. of depositors at each branch.

SQL> select branch_name,count(branch_name) from account a inner join depositer d on
a.acc_no=d.acc_no group by branch_name;

BRANCH_NAME COUNT(BRANCH_NAME)
Nigdi 1
Wakad 1

Akurdi 1

Q11. Find the branches where average account balance > 12000.
SQL> select branch_name from account group by branch_name having avg(balance)>1200;

BRANCH_NAME

Chinchwad

Nigdi

Wakad

Akurdi

Q12. Find number of tuples in customer relation.

SQL> select count(cust_name) no_of tuples from customerl;
NO_OF TUPLES

Q13. Calculate total loan amount given by bank.

SQL> select sum(amount) total_loan_amount from loan;
TOTAL_LOAN_AMOUNT

Q14. Delete all loans with loan amount between 1300 and 1500.

SQL> delete from loan where amount>1300 and amount<1500;

LOAN_NO BRANCH_NAME AMOUNT

2001 Akurdi 2000
2002 Nigdi 1200
2006 Akurdi 12300
2007 Akurdi 14000

Q15. Delete all tuples at every branch located in Nigdi.
SQL>delete from branch where branch_name='Nigdi;
Q.16. Create synonym for customer table as cust.

SQL> create public synonym cust2 for customerl;
Synonym created.

Q.17. Create sequence roll_seq and use in student table for roll_no column.
Conclusion:

Thus we successfully implemented MySQL queries.

Fynt Na- © Desian and develaon at least § SOOI _aueries for stitahle datahase
ExptNoe—5 HESIgR-aRG-GeVEIop-atitastooJH=—gquUeHesHoFSttadie-aatabase
application using SQL DML statements: all types of Join and Sub-

Query.

AIM: To Design at least 5 SQL queries for suitable database application using SQL DML statements: all
types of Join and Sub-Query.

Problem Statement: Design SQL queries for suitable database application using SQL DML
statements: all types of Join, Sub-Query and View.

create database pune bank;

use pune bank;

#branch (branch name,branch city,assets)

#Account (Acc_no, branch name,balance)

#Loan (loan no,branch name,amount)

#customer (cust name,cust street,cust city)

#Depositor (cust name, acc no)

#Borrower (cust name, loan no)

branch account depositor customer

lmmmqmm-:TL—aammmeMw*—L_vMMMWvav > wﬁmmuTMﬁ
, —) "Co er “ustomer_stree
branch_city branch_name account_number CUSIC Stree

assets balance

customer—city

loan borrdwer

loan—number 1—\— customer—name

branch_name loan_number
amount

1. Create following Tables
cust_mstr(cust_no,fname,Iname)
add_dets(code_no,add1,add2,state,city,pincode)

Retrieve the address of customer Fname as 'xyz' and Lname as "pqr’

2. Create following Tables
cust_mstr(custno,fname,Iname)
acc_fd_cust_dets(codeno,acc_fd_no)
fd_dets(fd_sr_no,amt)

List the customer holding fixed deposit of amount more than 5000

3. Create following Tables

emp_mstr(e_mpno,f_name,l_name,m_name,dept,desg,branch_no)

branch_mstr(name,b_no)

List the employee details along with branch names to which they belong

4. Create following Tables
emp_mstr(emp_no,f_name,l_name,m_name,dept)
cntc_dets(code_no,cntc_type,cntc_data)

List the employee details along with contact details using left outer join & right join

5. Create following Tables

cust_mstr(cust_no,fname,Iname)

add_dets(code_no,pincode)

List the customer who do not have bank branches in their vicinity.

6. a) Create View on borrower table by selecting any two columns and perform insert update
delete operations

b) Create view on borrower and depositor table by selecting any one column from each table
perform insert update delete operations

c) create updateable view on borrower table by selecting any two columns and perform insert,

update and delete operations.

Solutions:

1. Create following Tables
cust_mstr(cust_no,fname,Iname)
add_dets(code_no,add1,add2,state,city,pincode)

Retrieve the address of customer Fname as 'Rutuja’ and Lname as '‘Deshmane’

SQL> select * from cust_mstr;

CUSTNO FNAME LNAME
Cc101 Rutuja Deshmane
C102 Trupti Bargaje

C103 Samiksha Dharmadhikari
C104 Mahima Khandelwal

SQL> select add1,add2 from add_dets where code_no in(select custno from cust_mstr where fname='Rutuja’
and Iname='"Deshmane");

ADD1 ADD?2

venu nagar dange chowk

2. Create following Tables
cust_mstr(custno,fname,lname)
acc_fd_cust_dets(codeno,acc_fd no)
fd_dets(fd_sr_no,amt)

List the customer holding fixed deposit of amount more than 5000

SQL> select fname,Iname from cust_mstr where custno in(select codeno from acc_fd_cust_dets where
acc_fd_no in(select fd_sr_no from fd_dets where amt>5000));

FNAME LNAME

Rutuja Deshmane
Samiksha Dharmadhikari

3. Create following Tables
emp_mstr(e_mpno,f_name,l_name,m_name,dept,desg,branch_no)
branch_mstr(name,b_no)

List the employee details along with branch names to which they belong

SQL> select emp_no,fname,Iname,mname,dept,desg,branch_no,b.name from emp_mstr e inner join
branch_tb b on e.branch_no=b.b_no;

EMP_NO FNAME LNAME MNAME DEPT DESG BRANCH_NO NAME
1011 Samarth Deshmane Suryakant sports trainer 2011 Akurdi
1012 Alka Choudhari Rohitash comp tester 2012 nigdi
1013 Shriyash Shingare Santosh comp coder 2013 chinchwad

4. Create following Tables
emp_mstr(emp_no,f_name,l_name,m_name,dept)
cntc_dets(code_no,cntc_type,cntc_data)

List the employee details along with contact details using left outer join & right join

SQL> select emp_no,fname,Iname,mname,dept,c.code_no,c.cntc_type,c.cntc_data from emp_mstr e left
outer join cntc_dets ¢ on e.emp_no=c.code_no;

EMP_NO FNAME LNAME MNAME DEPT CODE_NO CNTC_TYPE CNTC_DATA

1011 Samarth Deshmane Suryakant sports 1011 phno 9689349523
1012 Alka Choudhari Rohitash comp 1012 email rutu@gmail.com
1013 Shriyash Shingare Santosh comp

SQL> select emp_no,fname,Iname,mname,dept,c.code_no,c.cntc_type,c.cntc_data from emp_mstr e right
outer join cntc_dets ¢ on e.emp_no=c.code_no;

EMP_NO FNAME LNAME MNAME DEPT CODE_NO CNTC_TYPE CNTC_DATA

1011 Samarth Deshmane Suryakant sports 1011 phno 9689349523
1012 Alka Choudhari Rohitash comp 1012 email rutu@gmail.com
1014 email shrink@gmail.com

5. Create following Tables
cust_mstr(cust_no,fname,Iname)
add_dets(code_no,pincode)

List the customer who do not have bank branches in their vicinity.

SQL> select * from cust_mstr where cust_no in (select code_no from add_dets where code_no like 'C%' and
pincode not in (select pincode from add_dets where code_no like 'B%"));

mailto:rutu@gmail.com
mailto:rutu@gmail.com
mailto:shrink@gmail.com

CUST_NO FNAME LNAME

C102 Trupti Bargaje

6. A) Create View on borrower table by selecting any two columns and perform insert update delete
operations

SQL> select * from borrower;

ACC_NO NAME AMOUNT

101 Alish 10000
102 Adi 10000
103 Swati 45216

SQL> create view b1l as select name, amount from borrower;
View created.

SQL> select * from b1;

NAME AMOUNT

Aish 10000
Adi 10000
Swati 45216

SQL> update b1 set amount=7845 where name="swati’;
1 row updated.

SQL> select * from borrower;

ACC_NO NAME AMOUNT

101 Aish 10000
102 Adi 10000
103 Swati 7845

SQL> delete from b1 where name='swati’,
1 row deleted.

SQL> select * from borrower;

ACC_NO NAME AMOUNT

B) Create view on borrower and depositor table by selecting any one column from each table
perform insert update delete operations

SQL> select * from borrower;

ACC_NO NAME AMOUNT

SQL> select * from depositor;

DACC_NO DNAME DAMOUNT
102 Adi 45789

104 Sneha 7895

103 Swati 79854

SQL> create view b3 as select amount loan, damount deposit from borrower, depositor;
View created.
SQL> select * from b3;

LOAN DEPOSIT

10000 45789
10000 7895
10000 79854

C) create updateable view on borrower table by selecting any two columns and perform insert,
Update and delete operations.

SQL> create table borrower(acc_no number(10) primary key,name varchar(10),amount
number(10));
Table created.

SQL> insert into borrower values(&acc,'&name',&amount);
Enter value for acc: 101

Enter value for name: Aish

Enter value for amount: 10000

old 1: insert into borrower values(&acc,'&name',&amount)
new 1: insert into borrower values(101,'aish',10000)

1 row created.

SQL>/

Enter value for acc: 102

Enter value for name: Adi

Enter value for amount: 4500

old 1: insert into borrower values(&acc,'&name',&amount)
new 1: insert into borrower values(102,'adi',4500)

1 row created.

SQL>/

Enter value for acc: 103

Enter value for name: Swati

Enter value for amount: 45216.

old 1: insert into borrower values(&acc,'&name',&amount)
new 1: insert into borrower values(103,'swati',45216.)

1 row created.

SQL> create view bview as select acc_no, amount from borrower;
View created.

SQL> insert into bview values(&acc,&amount);
Enter value for acc: 104

Enter value for amount: 58901

old 1: insert into bview values(&acc,&amount)
new 1: insert into bview values(104,58901)

1 row created.

SQL> select * from borrower;

ACC_NO NAME AMOUNT

101 aish 10000
102 adi 4500

103 swati 45216
104 58901

SQL> update bview set amount=45000 where acc_no=104;
1 row updated.

SQL> select * from borrower;

ACC_NO NAME AMOUNT

101 aish 10000
102 adi 4500

103 swati 45216
104 45000

SQL> select * from bview;

ACC_NO AMOUNT

101 10000
102 4500

103 45216
104 45000

SQL> delete from bview where acc_no=104;
1 row deleted.

SQL> select * from bview;

ACC_NO AMOUNT

101 10000
102 4500
103 45216
Conclusion:

Thus we successfully implemented MySQL queries.

Expt. No: 6 Study of PI SQL Control Structures and Exception Handling.

Aim: Study of Pl SQL Control Structures and Exception Handling.

Input: Student roll no and attendance is input to Procedure.

Theory:

The PL/SQL programming language was developed by Oracle Corporation in the late 1980s as
procedural extension language for SQL and the Oracle relational database. Following are certain
notable facts about PL/SQL —

PL/SQL is a completely portable, high-performance transaction-processing language.
PL/SQL provides a built-in, interpreted and OS independent programming environment.
PL/SQL can also directly be called from the command-line SQL*Plus interface.

Direct call can also be made from external programming language calls to database.
PL/SQL's general syntax is based on that of ADA and Pascal programming language.

Apart from Oracle, PL/SQL is available in TimesTen in-memory database and IBM DB2.

Features of PL/SQL

PL/SQL has the following features —

PL/SQL is tightly integrated with SQL.

It offers extensive error checking.

It offers numerous data types.

It offers a variety of programming structures.

It supports structured programming through functions and procedures.
It supports object-oriented programming.

It supports the development of web applications and server pages.

Advantages of PL/SQL

PL/SQL has the following advantages —

SQL is the standard database language and PL/SQL is strongly integrated with SQL. PL/SQL
supports both static and dynamic SQL. Static SQL supports DML operations and transaction control
from PL/SQL block. In Dynamic SQL, SQL allows embedding DDL statements in PL/SQL blocks.

PL/SQL allows sending an entire block of statements to the database at one time. This reduces
network traffic and provides high performance for the applications.

e PL/SQL gives high productivity to programmers as it can query, transform, and update data in a
database.

e PL/SQL saves time on design and debugging by strong features, such as exception handling,
encapsulation, data hiding, and object-oriented data types.

o Applications written in PL/SQL are fully portable.

e PL/SQL provides high security level.

e PL/SQL provides access to predefined SQL packages.

e PL/SQL provides support for Object-Oriented Programming.

e PL/SQL provides support for developing Web Applications and Server Pages.

DECLARE :- if you want to decalre a variable in plsgl program then it takes place in declare section
BEGIN:- is used to start the working of program and end is used to terminate the begin.

Delimiter is used to run (/)

SET SERVEROUTPUT ON ; is run before every time when you compiled a program in a session.
SET ECHO ON : is optional

DBMS_OUTPUT.PUT_LINE command for e.g. if sal=10 and you want to print it Then it looks like
dbms_output.put_line(‘the salary is ¢ ||sal);

IF STATEMENT
Common syntax
IF condition THEN
statement 1;
ELSE
statement 2;
END IF;
INTO command: is used to catch a value in variable from table under some while condition

Only one value must be returned For e.g. in the above example if there are two people who’s name is john
then it shows error

Exception Handling:

An exception is an error condition during a program execution. PL/SQL supports programmers to catch
such conditions using EXCEPTION block in the program and an appropriate action is taken against the
error condition. There are two types of exceptions —

o System-defined exceptions
o User-defined exceptions
Syntax for Exception Handling

The general syntax for exception handling is as follows. Here you can list down as many exceptions as you
can handle. The default exception will be handled using WHEN others THEN —

DECLARE
<declarations section>
BEGIN
<executable command(s)>
EXCEPTION
<exception handling goes here >
WHEN exceptionl THEN
exceptionl-handling-statements
WHEN exception2 THEN
exception2-handling-statements
WHEN exception3 THEN
exception3-handling-statements
WHEN others THEN
exception3-handling-statements
END,;
ORACLE :
http://127.0.0.1:8080/apex/f?p=4500:1000:2849714591695263

Problem Statement:

Use of Control structure and Exception handling is mandatory. Write a PL/SQL block of code for
the following requirements: Schema:
1. Borrower(Roll_no, Name, Dateoflssue, NameofBook, Status)
2. Fine(Roll_no,Date,Amt)
a) Accept roll_no & name of book from user.

b) Check the number of days (from date of issue), if days are between 15 to 30 then fine
amount will be Rs 5per day.

c) If no. of days>30, per day fine will be Rs 50 per day & for days less than 30, Rs. 5 per day.

d) After submitting the book, status will change from I to R.

e) If condition of fine is true, then details will be stored into fine table.

Solution in Mysq|l:

Steps are:

1) Create borrower and fine table with primary and foreign keys

2) insert records in borrower table

3) create procedure to insert entries in fine table with exception handling
4) call procedure to calculate fine and display fine table.

mysql> create table borrower(rollin int primary key,name varchar(20),dateofissue date,nameofbook
varchar(20),status varchar(20));
Query OK, 0 rows affected (0.30 sec)

mysql> desc borrower;

+ + + + + + +
| Field | Type | Null | Key | Default | Extra |
+ + + + + + +

[rollin [int(11) | NO | PRI | NULL ||

| name | varchar(20) | YES | | NULL | |

| dateofissue | date | YES | | NULL | |

| nameofbook | varchar(20) | YES | | NULL ||
| status | varchar(20) | YES | | NULL | |

5 rows in set (0.00 sec)

mysql> create table fine(rollno int,foreign key(rollno) references borrower(rollin),returndate date,amount
int);

Query OK, 0 rows affected (0.38 sec)

mysql> desc fine;

+ + + + o+ + +
| Field | Type | Null | Key | Default | Extra |
+ + + + o+ + +

roll_no	int(11)	YES	MUL	NULL	
returndate	date	YES		NULL	
amnt	int(11)	YES		NULL	

3 rows in set (0.02 sec)

mysql> insert into borrower values(1,'abc','2017-08-01','SEPM','PEN")$
Query OK, 1 row affected (0.16 sec)

mysql> insert into borrower values(2,'xyz',"2017-07-01',DBMS','PEN")$
Query OK, 1 row affected (0.08 sec)

mysql> insert into borrower values(3,'pqgr','’2017-08-15','DBMS','PEN")$

Query OK, 1 row affected (0.03 sec)

mysql> delimiter $

mysql> create procedure calc_fine_lib6(in roll int)

begin

declare finel int;

declare noofdays int;

declare issuedate date;

declare exit handler for SQLEXCEPTION select'create table definition’;
select dateofissue into issuedate from borrower where rollin=roll;
select datediff(curdate(),issuedate) into noofdays;

if noofdays>15 and noofdays<=30 then

set finel=noofdays*5;

insert into fine values(roll,curdate(),finel);

elseif noofdays>30 then

set finel=((noofdays-30)*50) + 15*5;

insert into fine values(roll,curdate(),finel);

else

insert into fine values(roll,curdate(),0);

end if;

update borrower set status="return’ where rollin=roll;
end $

mysql> call calc_fine_lib6(1)$
Query OK, 0 rows affected (0.09 sec)
mysql> call calc_fine_lib6(2)$
Query OK, 0 rows affected (0.09 sec)
mysql> call calc_fine_lib6(3)$
Query OK, 0 rows affected (0.09 sec)

mysql> select * from fine;

> $

+ + + +
| roll_no | returndate | amnt |
+ + + +

1]2017-08-22	105
2]2017-08-22	780
3]2017-08-22	0

3 rows in set (0.00 sec)

mysql>drop table fine$
Query OK, 0 rows affected (0.21 sec)

mysql> call calc_fine_lib6(1)$

+ +
| create table definition |
+ +

1 row in set (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

mysql> create table fine(rollno int,foreign key(rollno) references borrower(rollin),returndate date,amount
int)$

Query OK, 0 rows affected (0.34 sec)

mysql> call calc_fine_lib6(1)$
Query OK, 0 rows affected (0.09 sec)

mysql> select * from fine$

+ + + +
| rollno | returndate | amount |
+ + + +
| 1]2017-08-22 | 105 |

+ + + +

1 row in set (0.00 sec)

Problem Statement: Consider table Stud(Roll, Att,Status)

Write a PL/SQL block for following requirement and handle the exceptions. Roll no. of student will be
entered by user. Attendance of roll no. entered by user will be checked in Stud table. If attendance is less
than 75% then display the message “Term not granted” and set the status in stud table as “D”. Otherwise
display message “Term granted”” and set the status in stud table as “ND”

Solution in Oracle:
SQL> create table stud1(roll_no number(5),attendance number(5),status varchar(7));
Table created.

SQL> select * from studi;

ROLL_NO ATTENDANCE STATUS
101 80
102 65
103 92
104 55
105 68

SQL> set serveroutput on;
sQL>
declare
roll number(10);
att number(10);

begin

roll:=&kroll;

select attendance into att from stud1 where roll_no=roll; if
att<75 then

doms_output.put_line(roll||'is detained");
update studl set status="D"' where roll_no=roll;
else
doms_output.put_line(roll|'is not detained');
update studl set status="ND' where roll_no=roll;
end if;

exception

when no_data_found then
doms_output.put_line(roll||'not found");

end;

/

Enter value for roll: 102

old 5: roll:=&roll;

new 5: roll:=102;

102is detained

PL/SQL procedure successfully completed.

SQL>/

Enter value for roll: 101

old 5: roll:=&roll;

new 5: roll:=101;

101is not detained

PL/SQL procedure successfully completed.

SQL>/

Enter value for roll: 103

old 5: roll:=&roll;

new 5: roll:=103;

103is not detained

PL/SQL procedure successfully completed.

sQL>/

Enter value for roll; 104

old 5: roll:=&roll;
new 5: roll:=104;
104is detained

PL/SQL procedure successfully completed.
SQL>/

Enter value for roll; 105

old 5: roll:=&roll;
new 5: roll:=105;
105is detained

PL/SQL procedure successfully completed.

SQL> select * from studi;

ROLL_NO ATTENDANCE STATUS
101 80 ND
102 65 D
103 92 ND
104 55 D
Conclusion:

Thus we successfully implemented procedures.

Expt. No: 7 Study of all types of Cursor (All types: Implicit, Explicit, Cursor FOR
Loop, Parameterized Cursor)

Aim: To Study of all types of Cursor (All types: Implicit, Explicit, Cursor FOR Loop, Parameterized Cursor)

Input: New roll calls and old roll calls
Theory:

Oracle creates a memory area, known as the context area, for processing an SQL statement, which contains
all the information needed for processing the statement; for example, the number of rows processed, etc. A
cursor is a pointer to this context area. PL/SQL controls the context area through a cursor. A cursor holds
the rows (one or more) returned by a SQL statement. The set of rows the cursor holds is referred to as the
active set.
You can hame a cursor so that it could be referred to in a program to fetch and process the rows returned by
the SQL statement, one at a time. There are two types of cursors —

o Implicit cursors

o Explicit cursors
Implicit Cursors
Implicit cursors are automatically created by Oracle whenever an SQL statement is executed, when there is
no explicit cursor for the statement. Programmers cannot control the implicit cursors and the information in
it.
Whenever a DML statement (INSERT, UPDATE and DELETE) is issued, an implicit cursor is associated
with this statement. For INSERT operations, the cursor holds the data that needs to be inserted. For
UPDATE and DELETE operations, the cursor identifies the rows that would be affected.
In PL/SQL, you can refer to the most recent implicit cursor as the SQL cursor, which always has attributes
such as %0FOUND, %ISOPEN, %NOTFOUND, and %ROWCOUNT. The SQL cursor has additional
attributes, %BULK_ROWCOUNT and %BULK_EXCEPTIONS, designed for use with the FORALL
statement.

%FOUND
Returns TRUE if an INSERT, UPDATE, or DELETE statement affected one or more rows or a SELECT
INTO statement returned one or more rows. Otherwise, it returns FALSE.

%NOTFOUND

The logical opposite of %FOUND. It returns TRUE if an INSERT, UPDATE, or DELETE statement
affected no rows, or a SELECT INTO statement returned no rows. Otherwise, it returns

FALSE.

%ISOPEN
Always returns FALSE for implicit cursors, because Oracle closes the SQL cursor automatically after
executing its associated SQL statement.

%ROWCOUNT
Returns the number of rows affected by an INSERT, UPDATE, or DELETE statement, or returned by a
SELECT INTO statement.

Explicit Cursors

Explicit cursors are programmer-defined cursors for gaining more control over the context area. An explicit
cursor should be defined in the declaration section of the PL/SQL Block. It is created on a SELECT
Statement which returns more than one row.
The syntax for creating an explicit cursor is —
CURSOR cursor_name IS select_statement;
Working with an explicit cursor includes the following steps —

o Declaring the cursor for initializing the memory

e Opening the cursor for allocating the memory

e Fetching the cursor for retrieving the data

e Closing the cursor to release the allocated memory

Declaring the Cursor
Declaring the cursor defines the cursor with a name and the associated SELECT statement. For example —
CURSOR c¢_customers IS

SELECT id, name, address FROM customers;

Opening the Cursor

Opening the cursor allocates the memory for the cursor and makes it ready for fetching the rows returned by
the SQL statement into it. For example, we will open the above defined cursor as follows —

OPEN c_customers;

Fetching the Cursor

Fetching the cursor involves accessing one row at a time. For example, we will fetch rows from the above-
opened cursor as follows —

FETCH c_customers INTO c_id, c_name, ¢_addr;

Closing the Cursor

Closing the cursor means releasing the allocated memory. For example, we will close the above-opened
cursor as follows —

CLOSE c_customers;

To handle a result set inside a stored procedure, you use a cursor. A cursor allows you to iterate a set of rows
returned by a query and process each row individually.
MySQL cursor is read-only, non-scrollable and asensitive.

o Read-only: you cannot update data in the underlying table through the cursor.

e Non-scrollable: you can only fetch rows in the order determined by the SELECT statement. You
cannot fetch rows in the reversed order. In addition, you cannot skip rows or jump to a specific row
in the result set.

e Asensitive: there are two kinds of cursors: asensitive cursor and insensitive cursor. An asensitive
cursor points to the actual data, whereas an insensitive cursor uses a temporary copy of the data. An
asensitive cursor performs faster than an insensitive cursor because it does not have to make a
temporary copy of data. However, any change that made to the data from other connections will
affect the data that is being used by an asensitive cursor, therefore, it is safer if you do not update the
data that is being used by an asensitive cursor. MySQL cursor is asensitive.

https://www.mysqltutorial.org/mysql-stored-procedure-tutorial.aspx
https://www.mysqltutorial.org/stored-procedures-loop.aspx
https://www.mysqltutorial.org/mysql-select-statement-query-data.aspx

Problem Statement :

Cursors: (All types: Implicit, Explicit, Cursor FOR Loop, Parameterized Cursor)

Write a PL/SQL block of code using parameterized Cursor, that will merge the data available in the
newly created table N_RollCall with the data available in the table O_RollCall. If the data in the
first table already exist in the second table then that data should be skipped.

Solution in MySQL.:

Steps are:

1) Create new_roll call and old_roll call tables

2) Insert records in both tables with few records duplication

3) create procedure and use cursor to merge above two tables to finalize roll list without
duplication.

Assignment code:

mysql>create table new_roll(roll int,name varchar(10));
Query OK, 0 rows affected (0.29 sec)

mysql> create table old_roll(roll int,name varchar(10));
Query OK, 0 rows affected (0.28 sec)

mysql> insert into new_roll values(2,'b")$

Query OK, 1 row affected (0.05 sec)

mysql> insert into old_roll values(4,'d")$

Query OK, 1 row affected (0.05 sec)

mysql> insert into old_roll values(3,'bcd")$

Query OK, 1 row affected (0.04 sec)

mysql> insert into old_roll values(1,'bc")$

Query OK, 1 row affected (0.04 sec)

mysql> insert into old_roll values(5,'bch’)$

Query OK, 1 row affected (0.04 sec)

mysql> insert into new_roll values(5,'bch’)$

Query OK, 1 row affected (0.05 sec)

mysql> insert into new_roll values(1,'bc)$

Query OK, 1 row affected (0.04 sec)

mysql> select * from new_roll$

4 rows in set (0.00 sec)

mysql> select * from old_roll$

+ + +
| roll | name |
+ + +
12]b]
|41d|

| 1] bc |
5| beh |

5 rows in set (0.00 sec)

delimiter $

create procedure roll_list()

begin

declare oldrollnumber int;

declare oldname varchar(10);

declare newrollnumber int;

declare newname varchar(10);

declare done int default false;

declare c1 cursor for select roll,name from old_roll;
declare c2 cursor for select roll,name from new _roll;
declare continue handler for not found set done=true;
open c1;

loopl:loop

fetch c1 into oldrolinumber,oldname;

if done then

leave loop1;

end if;

open c2;

loop2:loop

fetch c2 into newrollnumber,newname;

if done then

insert into new_roll values(oldrollnumber,oldname);
set done=false;

close c2;

leave loop2;

end if;

if oldrollnumber=newrollnumber then

leave loop2;

end if;

end loop;

end loop;

close cl1;

end $

mysql> call roll_list()$
Query OK, 1 row affected (0.04 sec)

mysql> select * from new_roll$

|4]d|

5| beh|
| 1]bc|
13| bed |

5 rows in set (0.01 sec)

Problem Statement 2: The bank manager has decided to activate all those accounts which were
previously marked as inactive for performing no transaction in last 365 days. Write a PL/SQ block
(using implicit cursor) to update the status of account, display an approximate message based on the
no. of rows affected by the update. (Use of %FOUND, %NOTFOUND, %ROWCOUNT)

Solution in Oracle:

Declare

Rows_affe number(10);

Begin

update bankcursor set status="active'where

status="inactive'; Rows_affe:=(SQL%rowcount);

dbms_output.put_line(Rows_affe||' rows are
affected...’);
END;

Solution :
SQL> create table bankcursor(acc_no number(10),status varchar(10));
Table created.

SQL> select * from bankcursor;

ACC_NO STATUS

101 active
102 inactive
103 inactive
104 active
105 inactive

SQL>

Declare

Rows_affe number(10);

Begin

update bankcursor set status='active'where status="inactive’;
Rows_affe:=(SQL%rowcount);
dbms_output.put_line(Rows_affe||' rows are affected...”);
END;

/

3 rows are affected...
PL/SQL procedure successfully completed.

SQL> select * from bankcursor;

ACC_NO STATUS

101 active
102 active
103 active
104 active

105 active

Problem Statement 3: Organization has decided to increase the salary of employees by 10% of
existing salary, who are having salary less than average salary of organization, Whenever such
salary updates takes place, a record for the same is maintained in the increment_salary table.

EMP (E_no , Salary)
increment_salary(E_no :
Salary) code:

Solution in Oracle:

Declare

Cursor crsr_sal is select e_no,salary from emp2 where salary<(select avg(salary) from emp2);
me_no emp2.e_no%type;

msalary emp2.salary%type;

Begin

open crsr_sal;

if crsr_sal%isopen then

loop

fetch crsr_sal into me_no,msalary;

exit when crsr_sal%notfound,;

if crsr_sal%found then

update emp2 set salary=salary+(salary*0.1) where
e_no=me_no; select salary into msalary from emp2 where
e_no=me_no; insert into increament_t values(me_no,msalary);
end if;

end loop;

end if;

end;

SQL> create table emp2(e_no number(10),salary number(10));
Table created.

SQL> select * from emp2;

E_NO SALARY
101 1000

102 2000

103 113

SQL> create table increament_t(eno number(10),sal number(10));
Table created.

SQL>
Declare
Cursor crsr_sal is select e_no,salary from emp2 where salary<(select avg(salary)
from emp2);
me_no emp2.e_no%type;
msalary emp2.salary%type;

Begin

open crsr_sal;

if crsr_sal%isopen then

loop

fetch crsr_sal into me_no,msalary;

exit when crsr_sal%notfound,;

if crsr_sal%found then

update emp2 set salary=salary+(salary*0.1) where e_no=me_no; 14
select salary into msalary from emp2 where e_no=me_no;
insert into increament_t values(me_no,msalary);

end if;

end loop;

end if;

end;

/

PL/SQL procedure successfully completed.

SQL> select * from emp2;

E_NO SALARY
101 1100
102 2000
103 113
104 4000

SQL> select * from increament _t;

ENO SAL
. 1100
103 113
Conclusion:

Thus we successfully implemented procedures.

56

Expt. No: 8 Study all types of Database Trigger (All Types: Row level and Statement
level triggers, Before and After Triggers).

Aim: To Study of PL/SQL Stored Procedure and Stored Function.

Input: Students details and marks
Theory:

Procedure:

e A subprogram is a program unit/module that performs a particular task. These subprograms are
combined to form larger programs. This is basically called the 'Modular design'. A subprogram can be
invoked by another subprogram or program which is called the calling program.

e A subprogram can be created —

e At the schema level

e Inside a package

e Inside a PL/SQL block

e At the schema level, subprogram is a standalone subprogram. It is created with the CREATE
PROCEDURE or the CREATE FUNCTION statement. It is stored in the database and can be deleted
with the DROP PROCEDURE or DROP FUNCTION statement.

e A subprogram created inside a package is a packaged subprogram. It is stored in the database and can
be deleted only when the package is deleted with the DROP PACKAGE statement. We will discuss
packages in the chapter 'PL/SQL - Packages'.

e PL/SQL subprograms are named PL/SQL blocks that can be invoked with a set of parameters. PL/SQL
provides two kinds of subprograms —

e Functions — These subprograms return a single value; mainly used to compute and return a value.

e Procedures — These subprograms do not return a value directly; mainly used to perform an action.

e This chapter is going to cover important aspects of a PL/SQL procedure. We will discuss PL/SQL
function in the next chapter.

Creating a Function:

A standalone function is created using the CREATE FUNCTION statement. The simplified syntax for the
CREATE OR REPLACE PROCEDURE statement is as follows —
CREATE [OR REPLACE] FUNCTION function_name
[(parameter_name [IN | OUT | IN OUT] type [, ...])]
RETURN return_datatype
{IS|AS}
BEGIN
< function_body >
END [function_name];
Where,
o function-name specifies the name of the function.
¢ [OR REPLACE] option allows the modification of an existing function.
e The optional parameter list contains name, mode and types of the parameters. IN represents the value that
will be passed from outside and OUT represents th5e7parameter that will be used to return a value outside
of the procedure.

T TG TUTICUOIT TTTUSt COTTaT & TELUT T StateTen.

o The RETURN clause specifies the data type you are going to return from the function.
o function-body contains the executable part.
e The AS keyword is used instead of the IS keyword for creating a standalone function.

Calling a Function

While creating a function, you give a definition of what the function has to do. To use a function, you will have to
call that function to perform the defined task. When a program calls a function, the program control is transferred
to the called function.

A called function performs the defined task and when its return statement is executed or when the last end
statement is reached, it returns the program control back to the main program.

To call a function, you simply need to pass the required parameters along with the function name and if the
function returns a value, then you can store the returned value.

DECLARE
¢ number(2);
BEGIN
¢ := totalCustomers();
doms_output.put_line('Total no. of Customers: ' || c);
END;
/

Problem Statement 1: PL/SQL Stored Procedure and Stored Function.

Write a Stored Procedure namely proc_Grade for the categorization of student. If marks scored by students in
examination is <=1500 and marks>=990 then student will be placed in distinction category if marks scored are
between 989 and900 category is first class, if marks 899 and 825 category is Higher Second Class

Write a PL/SQL block for using procedure created with above requirement.

Stud_Marks(name, total_marks) Result(Roll,Name, Class)

Solution in MySQL.:

Steps:

1) create stud_marks and result table with primary and foreign keys
2)insert values in stud_marks

3)write and execute PL/SQL procedure for inserting grades in result table

Assignment is as follows:

mysql> desc stud_marks;

| name | varchar(20) | NO | PRI | NULL | |

| total_marks | int(11) | YES || NULL | |
58

2 rows in set (0.01 sec)

mysql> desc result;

roll	int(11)	YES		NULL	
class	varchar(10)	YES		NULL	
name	varchar(20)	YES	MUL	NULL	

3 rows in set (0.00 sec)

mysql> insert into stud_marks values(‘abhijit',1020)$
Query OK, 1 row affected (0.15 sec)

mysql> insert into stud_marks values(‘anand',979)$
Query OK, 1 row affected (0.04 sec)

mysql> insert into stud_marks values('vijay',864)$
Query OK, 1 row affected (0.04 sec)

mysql> insert into stud_marks values('vikas',755)$

Query OK, 1 row affected (0.03 sec)

Create procedure proc_grade()

begin

declare done int default false;

declare roll int;

declare totmarks int;

declare class varchar(10);

declare namel varchar(20);

declare c1 cursor for select name,total_marks from stud_marks;
declare continue handler for not found set done=true;
open cl;

set roll=1;

readloop:loop 59

fetch ¢l into namel,totmarks;

if done then

leave readloop;

end if;

if totmarks<=1500 and totmarks>=990 then
insert into result values(roll,'dist’,namel);
elseif totmarks<=989 and totmarks>=900 then
insert into result values(roll,'first’,namel);
elseif totmarks<=899 and totmarks>=825 then
insert into result values(roll,'HSC',namel);
else

insert into result values(roll,'poor’,namel);
end if;

set roll=roll+1;

end loop;

end $

mysql> call proc_grade()$

Query OK, 0 rows affected (0.38 sec)

mysql> select * from result$

1	dist	abhijit
2	first	anand
3	HSC	vijay
4	poor	vikas

4 rows in set (0.00 sec)

Problem Statement 2. Write a PL/SQL stored Procedure for following requirements and call the
procedure in appropriate PL/SQL block.

1. Borrower(Rollin, Name, Dateoflssue, NameofBook, Status)
2. Fine(Roll_no,Date,Amt)

« Accept roll_no & name of book from user.
60

¢ Check the number of days (from date of issue), if days are between 15 to 30 then fine amount
will be Rs 5per day.

« If no. of days>30, per day fine will be Rs 50 per day & for days less than 30, Rs. 5 per day.
« After submitting the book, status will change from I to R.

« If condition of fine is true, then details will be stored into fine table

Solution :

SQL>create or replace function cal_fine(diffdate number) return number is
begin

if diffdate<15 then

return O;

elsif diffdate<30 then

return (5*(diffdate-15));

else

return (50*(diffdate-30)+5*(15));end if;

end;

SQL> Declare

troll_no varchar(5);

tdays number(5);

tdate date;

diffdate number(5);

begin

troll_no :='&troll_no’;

select to_date(sysdate, DD-MM-YY")"Now" into tdate from dual,
select ((select to_date(sysdate, DD-MM-YY")"Now" from dual)-dateofissue) into diffdate
from Borrower

where roll_no=troll_no;

insert into Fine values(troll_no,tdate,cal_fine(diffdate));

update borrower set status = 'R" where roll_no=troll_no;

End;

/

61

create function cal_fss(diffdate number) return number is
begin

if diffdate<15 then

return 0;

elsif diffdate<30 then

return (5*(diffdate-15));

else

return (50*(diffdate-30)+5*(15));

end if;

end ;

create table borrower(rollno number primary key, name varchar2(20), dateofissue date, nameofbook
varchar2(20), status varchar2(20));

create table fine(rollno number, foreign key(rollno) references borrower(rollno), returndate date, amount
number);

insert into borrower values(1,'abc’,date '2021-06-01",'SEPM","I');
insert into borrower values(2,'xyz',date '2021-05-01',"O0OP",'I");
insert into borrower values(3,'pgr',date '2021-06-15",'DBMS",'I");
insert into borrower values(4,'def',date '2021-06-30",'DSA",’I');
insert into borrower values(5,'Imn*,date "'2021-07-05',"ADS",'I");

create procedure calc_fine_lib3(roll number) is

troll_no number(5);

tdays number(5);

tdate date;

diffdate number(5);

begin

troll_no :=roll;

select to_date(sysdate,'DD-MM-YY")""Now"" into tdate from dual;
select ((select to_date(sysdate,'DD-MM-YY')""Now" from dual)-dateofissue) into diffdate from Borrower
where rollno=troll_no;

insert into Fine values(troll_no,tdate,cal_fss(diffdate));

update borrower set status = 'R" where rollno=troll_no;

End;

Conclusion:
Thus we have successfully implemented PL/SQL stored procedures.

62

Expt. No: 9 Study all types of Database Trigger (All Types: Row level and Statement

level triggers, Before and After Triggers).

Aim: To Study all types of Database Trigger (All Types: Row level and Statement level triggers, Before and
After Triggers).

Input: Student library books information

Theory:

Triggers are stored programs, which are automatically executed or fired when some events occur.
Triggers are, in fact, written to be executed in response to any of the following events —

A database manipulation (DML) statement (DELETE, INSERT, or UPDATE)

A database definition (DDL) statement (CREATE, ALTER, or DROP).

A database operation (SERVERERROR, LOGON, LOGOFF, STARTUP, or SHUTDOWN).
Triggers can be defined on the table, view, schema, or database with which the event is associated.

Benefits of Triggers

Triggers can be written for the following purposes —
Generating some derived column values automatically
Enforcing referential integrity

Event logging and storing information on table access
Auditing

Synchronous replication of tables

Imposing security authorizations

Preventing invalid transactions

Creating Triggers

The syntax for creating a trigger is —
CREATE [OR REPLACE] TRIGGER trigger_name
{BEFORE | AFTER | INSTEAD OF }
{INSERT [OR] | UPDATE [OR] | DELETE}
[OF col_name]
ON table_name
[REFERENCING OLD AS 0o NEW AS n]
[FOR EACH ROW]
WHEN (condition)
DECLARE

Declaration-statements
BEGIN

Executable-statements
EXCEPTION

Exception-handling-statements
END;

63

Where,

CREATE [OR REPLACE] TRIGGER trigger_name — Creates or replaces an existing trigger with the
trigger_name.

{BEFORE | AFTER | INSTEAD OF} — This specifies when the trigger will be executed. The INSTEAD
OF clause is used for creating trigger on a view.

{INSERT [OR] | UPDATE [OR] | DELETE} — This specifies the DML operation.

[OF col_name] — This specifies the column name that will be updated.

[ON table_name] — This specifies the name of the table associated with the trigger.

[REFERENCING OLD AS o NEW AS n] — This allows you to refer new and old values for various
DML statements, such as INSERT, UPDATE, and DELETE.

[FOR EACH ROW] — This specifies a row-level trigger, i.e., the trigger will be executed for each row
being affected. Otherwise the trigger will execute just once when the SQL statement is executed, which is
called a table level trigger.

WHEN (condition) — This provides a condition for rows for which the trigger would fire. This clause is
valid only for row-level triggers.

Problem Statement:

Database Trigger (All Types: Row level and Statement level triggers, Before and After Triggers).
Write a database trigger on Library table. The System should keep track of the records that are being updated or

deleted.

The old value of updated or deleted records should be added in Library_Audit table.

Solution in MySQL.:

Steps are:

1) Create lib_audit and lib_audit2 tables

2) Insert records in lib_audit

3) create trigger for before update and before delete on lib_audit.

/[Trigger for delete on lib_audit

mysql> create table lib_audit(bookid int,pookname varchar(20),price int)$
Query OK, 0 rows affected (0.58 sec)

mysql> create table lib_audit2(bookid int,bookname varchar(20),price int)$
Query OK, 0 rows affected (0.36 sec)

mysql> Create trigger before_delete lib_audit before delete on lib_audit for each row

begin

insert into lib_audit2 values(old.bookid,old.bookname,old.price);

end$

Query OK, 0 rows affected (0.13 sec)

mysgl> insert into lib_audit values(1,'ab’,100)$
Query OK, 1 row affected (0.05 sec)

mysql> insert into lib_audit values(2,'cd',10)$
Query OK, 1 row affected (0.05 sec)

mysql> insert into lib_audit values(3,'dg’,101)$
Query OK, 1 row affected (0.05 sec)

64

mysql> select * from lib_audit$

+ + + +

| bookid | bookname | price |
+ + + +
|1|ab|100 |

|2]cd|10 |

|3]dg|101|

+ + + +

3 rows in set (0.00 sec)

mysql> select * from lib_audit2$
Empty set (0.00 sec)

mysql> delete from lib_audit where bookid=1$
Query OK, 1 row affected (0.14 sec)

mysql> select * from lib_audit$

+ + + +

| bookid | bookname | price |
+ + + +
|2]cd|10|

|3]dg|101|

+ + + +

2 rows in set (0.00 sec)

mysql> select * from lib_audit2$

+ + + +

| bookid | bookname | price |
+ + + +
|1]ab|100 |

+ + + +

1 row in set (0.00 sec)

mysql> delete from lib_audit where bookid=3%
Query OK, 1 row affected (0.04 sec)

mysql> select * from lib_audit2$

+ + + +
| bookid | bookname | price |
+ + + +
|1]ab|100 |

|3]dg|101 |

+ + + +

2 rows in set (0.00 sec)

/[Trigger for update on lib_audit

mysql> Create trigger before_update_lib_audit before update on lib_audit for each row
begin

insert into lib_audit2 values(old.bookid,old.bookname,old.price);

end$

mysql> update lib_audit set bookname="xy" where bookid=2$

Query OK, 1 row affected (0.07 sec)
Rows matched: 1 Changed: 1 Warnings: 0

65

mysql> select * from lib_audit$

+ + + +

| bookid | bookname | price |
+ + + +
|2[xy|10]

+ + + +

1 row in set (0.00 sec)
mysql> select * from lib_audit2$

+ + + +

| bookid | bookname | price |
+ + + +
|1|ab|100 |

|3]dg|101|

|2]cd|10|

+ + + +

Problem Statement : Write a update, delete trigger on client mstr table. The System should keep track of the
records that ARE BEING updated or deleted. The old value of updated or deleted records should be added in
audit trade table. (separate implementation using both row and statement triggers).

Solution in Oracle:

Row trigger:

SQL> create or replace trigger t1 after update or delete on client_master 2
for each row

declare

op varchar(10);

begin

if updating then

op:='update’;

end if;

if deleting then

op:='Delete’; end if;

into stat values(:old.id,op);

insert into audit_trade values(:old.id,:old.cname);
doms_output.put_line('Details updated to stat and audit_trade table");
end;

/ Trigger created.

Statement Trigger:

SQL> create or replace trigger t1 after update or delete on client_master 2
for each row

declare

op varchar(10);

begin

if updating then

op:='update’;

end if;

if deleting then

op:='Delete’; end if;

into stat values(",op);

insert into audit_trade values(:old.id,:old.cname);
doms_output.put_line('Details updated to stat and audit_trade table'); end,;
/ Trigger created. 66

Conclusion: Thus we have successfully implemented trigger.

Virtual LAB Links:

1. Lab Name: Database Lab
Link of the Virtual Lab: http://vlabs.iitb.ac.in/vlabs-dev/labs/dblab/index.php

Database Lab

Data Definition Language(DDL) Statements: (Create table, Alter
table, Drop table)

Data Manipulation Language(DML) Statements

Data Query Language(DQL) Statements: (Select statement with
operations like Where clause, Order by, Logical operators, Scalar
functions and Aggregate functions)

Transaction Control Language(TCL) statements: (Commit(make
changes permanent), Rollback (undo)

Describe statement: To view the structure of the table created

HOME LABS GITLAB

Database Lab

@ Database Lab > Data Definition Language(DDL) Statements: (Create table, Alter table, Drop table) > Post Test

Data Definition Language(DDL) Statements: (Create table, Alter table, Drop table)

Post Test

Use simulator to complete below task.
&1 Procedure
1. Which of the following command is used to change the structure of the table
O Create table
O Alter table
sy 7‘ Drop table
I O All of the above

Simulation

2. The c d per ly removes the table
O Delete table
O Drop table
O Remove table
O All of the above

3. The data types supported in this database are
O Varchar
O Number
O Date

67

https://nptel.ac.in/courses/108/105/108105158/
http://vlabs.iitb.ac.in/vlabs-dev/labs/dblab/index.php

MYSQL/Oracle database connectivity with PHP/python/Java Implement Database
navigation operations.

Expt. No: 10

Aim: To implement MYSQL/Oracle database connectivity with PHP/python/Java Implement Database
navigation operations (add, delete, edit,) using ODBC/JDBC.

Input: Student library books information

Theory: Introduction to JDBC:
JDBC is used for accessing databases from Java applications Information is transferred from relations to objects

and vice-versa
odlatabases optimized for searching/indexing
-objects optimized for engineering/flexibility

We will Oracle
use this one... Driver
N 4

JDBC architecture:

—_>

Oracle

Java DB2
Application ' Driver —
o, DB2
—>

\ MySQL

Network

JDBC Architecture (cont.)

Applicati
on

Java code calls JDBC library JDBC loads a driver Driver talks to a particular database An application
can work with several databases by using all corresponding drivers Ideal: can change database engines

without changing any application code (not always in practice)

68

Common JDBC components:

Driver Manager: This class manages a list of database drivers. Matches connection requests from the
java application with the proper database driver using communication subprotocol. The first driver that
recognizes a certain subprotocol under JDBC will be used to establish a database Connection.

Driver: This interface handles the communications with the database server. You will interact directly
with Driver objects very rarely. Instead, you use DriverManager objects, which manages objects of this
type. It also abstracts the details associated with working with Driver objects

Connection : This interface with all methods for contacting a database. The connection object
represents communication context, i.e., all communication with database is through connection object
only.

Statement : You use objects created from this interface to submit the SQL statements to the database.
Some derived interfaces accept parameters in addition to executing stored procedures.

ResultSet: These objects hold data retrieved from a database after you execute an SQL query using
Statement objects. It acts as an iterator to allow you to move through its data.

SQLException: This class handles any errors that occur in a database application.
JDBC SQL Syntax:

Structured Query Language (SQL) is a standardized language that allows you to perform operations on a
database, such as creating entries, reading content, updating content, and deleting entries. This tutorial
gives an overview of SQL, which is a pre-requisite to understand JDBC concepts. This tutorial gives you
enough SQL to be able to Create, Read, Update, and Delete (often referred to as CRUD operations) data
from a database.

Create database:
SQL> CREATE DATABASE DATABASE NAME;

Example: The following SQL statement creates a Database named EMP: SQL> CREATE DATABASE
EMP;

Drop database:
SQL> DROP DATABASE DATABASE_NAME;
Create table:

SQL> CREATE TABLE table name (column_name column_data type, column_name
column_data_type, column_name column_data_type ...);

Insert data:

SQL> INSERT INTO table_name VALUES (columnlg, gcolumn2, ...);

Select data:

SQL> SELECT column_name, column_name, ... FROM table_name WHERE conditions;

Update data:

SQL> UPDATE table_name SET column_name = value, column_name = value, ... WHERE conditions;
Delete data:

SQL> DELETE FROM table_name WHERE conditions;

Step for creating JDBC application:

There are following steps involved in building a JDBC application:

1. Import the packages. Requires that you include the packages containing the JDBC classes needed for
database programming. Most often, using import java.sql.* ; will suffice.

2. Register the JDBC driver. Requires that you initialize a driver so you can open a communications
channel with the database.

3. Open a connection . Requires using the DriverManager. getConnection() method to create a
Connection object, which represents a physical connection with the database.

JDBC Driver is a software component that enables java application to interact with the database. There
are 4 types of JDBC drivers: 1. JDBC-ODBC bridge driver

2. Native-API driver (partially java driver)

3. Network Protocol driver (fully java driver)

4. Thin driver (fully java driver)

Six steps:

1. Load the driver

2. Define the connection URL

3. Establish the connection

4. Create a Statement object

5. Execute a query using the Statement, Process the result

6. Close the connection

Conclusion: Thus through JDBC connection the op%ations are performed.

	DR. D. Y. PATIL INSTITUTE OF ENGINEERING, MANAGEMENT & RESEARCH, AKURDI
	NAAC 1.4.1 Curriculum Feedback Report
	Dr. D. Y. Patil Pratishthan’s
	AI&DS and COMPUTER ENGINEERING DEPARTMENT
	Sr. No Content Page No.
	1. Notice
	EXPERT LECTURE
	Microsoft Teams Link:

	2. Objectives
	3. Information about Speaker
	4. Report
	Highlights of the Talk:
	Details of the session:

	5. Glimpses of the session
	Learning Outcomes
	Attendance Record
	Letter of Conduction
	Report Prepared by
	Mrs. Sandhya Gundre Mrs. Suvarna Patil
	Asst. Prof, DYPIEMR
	Training Coordinator Head of Department
	Training Coordinator Head of Department (1)

	Class – TE
	Vision:
	Mission:
	Guidelines for Student's Lab Journal
	Guidelines for Lab Assessment:

	INDEX
	Learning Resources:
	1. Study of Open Source Relational Databases : MySQL
	AIM:
	OBJECTIVES:
	Theory:

	INTRODUCTION TO SQL:
	MYSQL Installation Process: Installation Process –
	Data Definition in SQL CREATE, ALTER and DROP
	DATA TYPES
	Components of SQL:
	Examples:
	2) DML(Data Manipulation Language)
	3) DCL(Data Control Language)
	Examples: (1)
	 The commands used in MySQL are:
	i) FOR CREATING A DATABASE :
	Example:
	ii) FOR CREATINGA TABLE:
	Syntax:
	Example: (1)
	Syntax: (1)
	Syntax: (2)
	Syntax: (3)
	Syntax: (4)
	Syntax: (5)
	Syntax: (6)
	Example: (2)
	Syntax: (7)
	Conclusion:

	Problem Statement:
	Theory:
	DDL
	DML
	DCL
	TCL
	SQL Statements For Tables
	NOT NULL Constraint
	UNIQUE constraint
	Primary Key
	Foreign Key
	Creating Sequence
	CREATE SYNONYM:
	SQL CREATE VIEW Statement

	Create table branch(branch_name,branch_city,assets) :
	Create table borrower(cust_name,loan_no) :
	AIM:
	OBJECTIVES:

	Problem Statement: (1)
	Theory:
	Solve following queries:
	Create table branch(branch_name,branch_city,assets) : (1)
	Create table borrower(cust_name,loan_no) : (1)
	Q3. Find all customers who have a loan from bank. Find their names, loan_no and loan amount.
	Q4. List all customers in alphabetical order who have loan from Akurdi branch.
	Q6. Find all customers who have both account and loan at bank.
	Q7. Find all customer who have account but no loan at the bank.
	Q8. Find average account balance at Akurdi branch.
	Q9. Find the average account balance at each branch
	10. Find no. of depositors at each branch.
	Q11. Find the branches where average account balance > 12000.
	Q12. Find number of tuples in customer relation.
	Q14. Delete all loans with loan amount between 1300 and 1500.
	Q15. Delete all tuples at every branch located in Nigdi.
	Q.16. Create synonym for customer table as cust.
	Q.17. Create sequence roll_seq and use in student table for roll_no column.
	Conclusion:

	Expt. No: 5
	Retrieve the address of customer Fname as 'xyz' and Lname as 'pqr'
	List the customer holding fixed deposit of amount more than 5000
	List the employee details along with branch names to which they belong
	List the employee details along with contact details using left outer join & right join
	List the customer who do not have bank branches in their vicinity.
	Solutions:
	Retrieve the address of customer Fname as 'Rutuja' and Lname as 'Deshmane'
	List the customer holding fixed deposit of amount more than 5000
	List the employee details along with branch names to which they belong
	List the employee details along with contact details using left outer join & right join
	List the customer who do not have bank branches in their vicinity.

	Expt. No: 6
	IF STATEMENT
	Solution in Mysql:
	mysql> create table borrower(rollin int primary key,name varchar(20),dateofissue date,nameofbook varchar(20),status varchar(20));
	Problem Statement: Consider table Stud(Roll, Att,Status)
	Solution in Oracle:
	Conclusion:
	Theory:
	Implicit Cursors
	Explicit Cursors
	CURSOR cursor_name IS select_statement;
	Declaring the Cursor
	Opening the Cursor
	Fetching the Cursor
	Closing the Cursor

	Problem Statement :
	Cursors: (All types: Implicit, Explicit, Cursor FOR Loop, Parameterized Cursor)
	Conclusion:
	Theory:
	Creating a Function:
	Calling a Function

	Solution in MySQL:
	Solution :
	/
	if diffdate<15 then return 0;
	return (50*(diffdate-30)+5*(15)); end if;
	create table borrower(rollno number primary key, name varchar2(20), dateofissue date, nameofbook varchar2(20), status varchar2(20));
	insert into borrower values(1,'abc',date '2021-06-01','SEPM','I'); insert into borrower values(2,'xyz',date '2021-05-01','OOP','I'); insert into borrower values(3,'pqr',date '2021-06-15','DBMS','I'); insert into borrower values(4,'def',date '2021-06-3...
	tdays number(5); tdate date;
	troll_no := roll;
	select ((select to_date(sysdate,'DD-MM-YY')"Now" from dual)-dateofissue) into diffdate from Borrower where rollno=troll_no;
	Conclusion:
	Theory:
	Benefits of Triggers
	Creating Triggers

	Problem Statement: (2)
	Database Trigger (All Types: Row level and Statement level triggers, Before and After Triggers).
	Solution in MySQL:

	Solution in Oracle:
	Statement Trigger:
	JDBC SQL Syntax:
	Create database:
	Drop database:
	Create table:
	Insert data:
	Update data:
	Delete data:
	Step for creating JDBC application:
	Six steps:
	Conclusion: Thus through JDBC connection the operations are performed.

