
Dr. D. Y. Patil Pratishthan’s

DR. D. Y. PATIL INSTITUTE OF ENGINEERING, MANAGEMENT &

RESEARCH, AKURDI
Approved by A.I.C.T.E, New Delhi, Maharashtra State Government, Affiliated to Savitribai Phule Pune

University Sector No. 29, PCNTDA, Nigdi Pradhikaran, Akurdi Pune 411044. Phone: 020-27654470, Fax: 020-

27656566 Website: www.dypiemr.ac.in Email: principal@dypiemr.ac.in

Ref.No: DYPIEMR/Admin/2021-22 Date: 2 /6 /2022

NAAC 1.4.1 Curriculum Feedback Report

(A.Y- 2021-2022)

Sr.No Stakeholder Feedback Collected

1

Students

Syllabus should based on practical basis

Industrial Visit and expert lecture from industry person
required, virtual visits should me more

Software’s like ANSIS, VHDL,MATLAB, MODFLOW is
required in addition languages like R, Python and SQL also
included in syllabus

The efficient online practical platform should be provided.

Faculty should upload their courses on e-platform like
Udemy and coursera.

2

Teachers

The curriculum should be design a such way that it fulfill
industry demand

For practical’s more time should be given in academic

3

Alumni

Give printed manual for submission

Lectures from Industry experts must be there

To Improve communication skill, class should be there

Take add-on courses on new techniques as per industry
requirements

4

Parents

Overall improvement should be there

The softskills workshop should be there for students

The placement should be there for each student

Motivation should be there for student to have higher degree

http://www.dypiemr.ac.in/
mailto:principal@dypiemr.ac.in

1. Mail to BOS regarding curricular gap of SE, TE, BE (2019 course) of E&TC.

2. Guest Lecture for TE students of AI&DS and Computer Engineering department

Dr D Y Patil Pratishthan’s

Dr. D.Y. Patil Institute of Engineering, Management and
Research, Akurdi, Pune

DI No.:

ACAD/DI/56B

Academic Year:
2021-22

Report of Event Organized
Revision : 00
Dated : 20/11/2019

Term –I Department of AI&DS and Computer Engineering
Date of Preparation
: 09.09.2021

Dr. D. Y. Patil Pratishthan’s

DR. D. Y. PATIL INSTITUTE OF ENGINEERING, MANAGEMENT & RESEARCH

Approved by A.I.C.T.E, New Delhi , Maharashtra State Government, Affiliated to Savitribai Phule Pune University

Sector No. 29, PCNTDA , Nigidi Pradhikaran, Akurdi, Pune 411044. Phone: 020–27654470, Fax: 020-27656566

Website : www.dypiemr.ac.in Email : principal.dypiemr@gmail.com

AI&DS and COMPUTER ENGINEERING DEPARTMENT

GUEST LECTURE

on

Devops Tool
Participants : TE students of DYPIEMR

Venue : Online MS Teams Platform

Date : 08/09/2021

Organizing Team : Mrs. Sandhya Gundre, Mrs. Ketaki Bhoyar,

Mrs. Suvarna Patil, Program Chair, ACM.

http://www.dypiemr.ac.in/
mailto:principal.dypiemr@gmail.com

Table of Content

Sr. No Content Page No.

1. Guest Lecture on “Guidance for Higher Studies (M.S.)”

2. Appendix

i. Notice

ii. Invitation to the Guest

iii. Attendance Record

iv. Feedback Forms

v. Analysis of Feedback

vi. Letter of Conduction

vii. Speakers Feedback

1. Notice

Dr D Y Patil Pratishthan’s
Dr. D.Y. Patil Institute of Engineering, Management and

Research, Akurdi, Pune

DI No.:

ACAD/DI/72

Academic Year:

2021-22
Expert Lecture Notice

Revision : 00
Dated : 20/11/2019

Term – I

Computer Engineering Department
Date of
Preparation :
1/09/2021

EXPERT LECTURE

All TE Computer students are hereby informed that Expert Lecture on “DevopsTools” will be conducted in

association with ACM, Students Chapter. The Expert Lecture is organized to enable the understanding about

the techniques, and best practices to create cleaner, more readable, more efficient code with minimal errors.

Attendance is mandatory.

TOPIC: “DevopsTools”

Date &Time: 08th September 2021, 10. 00 am

Speaker: Mr. Jayant Nandurkar, Technical Architect , Whirlpool Asia LLP

Microsoft Teams Link:

https://teams.microsoft.com/l/meetup-join/19%3ameeting_ODFlN2YyYWEtN2UyMi00NWRhLWI0YjgtNjA

5YTg3NTgzNzU2%40thread.v2/0?context=%7b%22Tid%22%3a%223a3cd3f3-9917-40dc-91e0-85146eaf5d

55%22%2c%22Oid%22%3a%226fcd1471-1d3a-4e7e-88f2-ea499dd7a7e5%22%7d

Mrs. Sandhya Gundre Mrs Ketaki Bhoyar Mrs P.P Shevatekar Mrs. Suvarna Patil

Mrs. Pallavi Yevale

Guest Lecture Coordinator ACM Coordinator HOD Computer HOD AI-DS

2. Objectives

● To motivate students for higher studies in foreign countries.

● To aware students about real scenario in foreign countries while doing M.S.

3. Information about Speaker

Mr. Jayant Nandurkar
Technical Architect , Whirlpool Asia LLP

4. Report

Title: “DevopsTools”

Day & Date: 08/09/2021

Highlights of the Talk:

● To demonstrate the current situation in IT industry

● How to prepare for GRE & TOEFL

● Living situation in foreign countries while doing M.S.

● Motivating students to prepare themselves for higher studies

The Session was organized on MS Teams platform for the SE, TE and BE Computer

Engineering Students.

Details of the session:

The speaker itself is an alumni of DYPIEMR. He opted for higher education (M.S.)

immediately after graduation from DYPIEMR, SPPU University, Pune. He shared experience

right from preparation of GRE & TOFEL till the complete graduation and working

environment there. He also shared his experience regarding spending money on course as well

as living expenses. He motivated students for opting higher education and also cleared out

their confusions regarding many issues living outside the country. He is working at well

known position in the well known industry. At the end of session he gave his contact details to

students for any further queries.

5. Glimpses of the session

Snapshot 1: Glimpse on ongoing session by Jayant Nandurkar

Snapshot 2: Participants attending guest session

Learning Outcomes

● Students understood current situation in foreign countries.

● Students were motivated to go for higher studies.

● Students understood placement scenario after M.S.

Attendance Record

Feedback Form and Analysis

Letter of Conduction

Letter of Appreciation

Report Prepared by

Mrs. Sandhya Gundre

Mrs. Suvarna Patil

Mrs. Shivganga Gavhane

Mrs. Ketaki Bhoyar

Asst. Prof,

DYPIEMR

3. Industrial Visit report of Computer Engineering department

1

Dr D Y Patil Pratishthan’s

Dr. D.Y. Patil Institute of Engineering, Management

and Research, Akurdi, Pune

DI No.:

ACAD/DI/56 A

Academic Year:
2021-22

Industrial Visit One Page Report Revision : 00
Dated : 20/11/2019

Term – I
Computer Engineering Department

Date of
Preparation :
19/12/2021

Activity Report

Activity Industrial Visit

Department Computer Engineering

Title

Virtual Industrial Visit- IIT Bombay Virtual Industry Visits

2021-22 with top companies like Mercedes Benz, Godrej

& Boyce.

Date 19/12/21

Name of

Speaker

Company representatives.

Mr.Prasanna Gonugatla

Objectives
● How the companies are working?

● Which area company is looking more productive

performance?

 Mercedes Benz Research & Development India, is the largest
 R&D center outside Germany for Mercedes Benz AG. MBRDI
 taps into India’s engineering and IT talent to develop innovative
 products both locally and globally. Here at MBRDI, with a mix of
 interdisciplinary team players, working on the future of
 mobility, we focus on topics ranging from computer-aided
 design and simulations (CAD and CAE) for powertrain, chassis
 and exteriors to embedded systems, telematics and on
Brief developing a host of IT applications and tools. The virtual tour

Description will give you a glimpse of the Digital process chain that enables
 digital product development and Manufacturing.
 Godrej & Boyce Mfg. Co. Ltd., the flagship company of the
 Godrej Group, has played a key role in India's economic history
 by driving excellence in design and manufacturing, and
 delivering sustainable value for its stakeholders and
 communities. Godrej Process Equipment, a strategic business
 unit of Godrej & Boyce is one of the leading global
 manufacturers of critical Process Equipment for Oil & Gas,
 Fertilizer & Chemicals and Power Sector. Having manufactured

2

Dr D Y Patil Pratishthan’s

Dr. D.Y. Patil Institute of Engineering, Management

and Research, Akurdi, Pune

DI No.:

ACAD/DI/56 A

Academic Year:
2021-22

Industrial Visit One Page Report Revision : 00
Dated : 20/11/2019

Term – I
Computer Engineering Department

Date of
Preparation :
19/12/2021

 more than 3000 equipment and catered to more than 400

global customers in 35 countries, Godrej Process Equipment
has world class manufacturing facilities in Mumbai & Dahej.

Outcome

Students will be able to

● Understand the working of company plants

and their production strategies.

● Information regarding designs.

CO/PO/PSO

Mapping
PO1, PO6, PO7

Student

Benefited
SE (A & B),TE(A & B),BE(A & B) Computer 233 students

Glimpses

(Mercedez &

Godrej)

3

Dr D Y Patil Pratishthan’s

Dr. D.Y. Patil Institute of Engineering, Management

and Research, Akurdi, Pune

DI No.:

ACAD/DI/56 A

Academic Year:
2021-22

Industrial Visit One Page Report Revision : 00
Dated : 20/11/2019

Term – I
Computer Engineering Department

Date of
Preparation :
19/12/2021

4

Dr D Y Patil Pratishthan’s

Dr. D.Y. Patil Institute of Engineering, Management

and Research, Akurdi, Pune

DI No.:

ACAD/DI/56 A

Academic Year:
2021-22

Industrial Visit One Page Report Revision : 00
Dated : 20/11/2019

Term – I
Computer Engineering Department

Date of
Preparation :
19/12/2021

5

Dr D Y Patil Pratishthan’s

Dr. D.Y. Patil Institute of Engineering, Management

and Research, Akurdi, Pune

DI No.:

ACAD/DI/56 A

Academic Year:
2021-22

Industrial Visit One Page Report Revision : 00
Dated : 20/11/2019

Term – I
Computer Engineering Department

Date of
Preparation :
19/12/2021

6

Dr D Y Patil Pratishthan’s

Dr. D.Y. Patil Institute of Engineering, Management

and Research, Akurdi, Pune

DI No.:

ACAD/DI/56 A

Academic Year:
2021-22

Industrial Visit One Page Report Revision : 00
Dated : 20/11/2019

Term – I
Computer Engineering Department

Date of
Preparation :
19/12/2021

Dr. Amol Ramrao Dhakne
Ms.Raji Ajith Panickar Mrs P.P Shevatekar

Mr.Shivaji Vasekar (Head of Department)

(Faculty Coordinator)

4. Virtual Lab report of E&TC department

Dr D Y Patil Pratishthan’s

Dr. D.Y. Patil Institute of Engineering, Management

and Research, Akurdi, Pune

DI No.:

ACAD/DI/56 A

Academic Year:

2021-22
One Page Activity Report Revision : 00

Dated : 20/11/2019

Term – I

Department of Electronics and Telecommunication

Engineering

Date of
Preparation :
14/9/21

Activity Report

Activity Virtual Lab

Department Electronics and Telecommunication Engineering

Title Virtual Lab on Electrical Circuits

Date 13/9/2021 and 14/09/2021

Name of

Speaker
-

Objectives Understand the practical knowledge about Electrical Circuits using

Virtual lab

Brief

Description

Practice on Virtual Lab for Electrical Circuits subject was conducted

on 13/9/21 and 14/9/21 at 1.40 pm. Here we performed One

experiments ie KCL, KVL and Ohms Law through virtual lab, where

we calculated and observed

1. Currents through various given branches.

2. Voltages across the given branches.

3. Power absorbed or delivered by a given component.

Outcome
Understood the Ohms Law, KCL and KVL

CO/PO/PSO

Mapping
CO1

Student

Benefited
23

Glimpses

Dr D Y Patil Pratishthan’s

Dr. D.Y. Patil Institute of Engineering, Management

and Research, Akurdi, Pune

DI No.:

ACAD/DI/56 A

Academic Year:

2021-22
One Page Activity Report Revision : 00

Dated : 20/11/2019

Term – I

Department of Electronics and Telecommunication

Engineering

Date of
Preparation :
14/9/21

 Mrs. Munmun Kakkar Dr. Priya Charles

Faculty Coordinator Head of Department

5. Summary of Add on courses of E&TC department of semester I

Dr D Y Patil Pratishthan’s
Dr. D.Y. Patil Institute of Engineering, Management and

Research, Akurdi, Pune

DI No.:

ACAD/DI/57

Academic Year:
2021-22

Summary of Add on Course
Revision : 00
Dated : 20/11/2019

Term – I
Department : Electronics And Telecommunication

Engineering
Date of Preparation
: 31/12/21

A

Report On

Add On Course

Dr D Y Patil Pratishthan’s
Dr. D.Y. Patil Institute of Engineering, Management and

Research, Akurdi, Pune

DI No.:

ACAD/DI/57

Academic Year:
2021-22

Summary of Add on Course
Revision : 00
Dated : 20/11/2019

Term – I
Department : Electronics And Telecommunication

Engineering
Date of Preparation
: 31/12/21

Academic
Year: 2021-22

Sr.
No.

Course Title Year/ Branch./ Div. Duration of
Course (Hrs.)

Total No.
of
Students

Training Agency

1 C/C++ S.E. 30 hrs 79 VAP

Training Coordinator Head of Department
Mr. Lokesh Giripunje Dr. Priya Charles

6. Summary of Add on courses of E&TC department of semester II

Dr D Y Patil Pratishthan’s
Dr. D.Y. Patil Institute of Engineering, Management and

Research, Akurdi, Pune

DI No.:

ACAD/DI/57

Academic Year:
2021-22

Summary of Add on Course
Revision : 00
Dated : 20/11/2019

Term – II
Department : Electronics And Telecommunication

Engineering
Date of Preparation
: 25/04/22

A

Report On

Add On Course

Dr D Y Patil Pratishthan’s
Dr. D.Y. Patil Institute of Engineering, Management and

Research, Akurdi, Pune

DI No.:

ACAD/DI/57

Academic Year:
2021-22

Summary of Add on Course
Revision : 00
Dated : 20/11/2019

Term – II
Department : Electronics And Telecommunication

Engineering
Date of Preparation
: 25/04/22

Academic Year: 2021-22

Sr.
No.

Course Title Year/ Branch./ Div. Duration of
Course (Hrs.)

Total No.
of
Students

Training Agency

1 Aptitude and
GDPI Training

T.E. 80 hrs. 25 Campus
Credentials

2 PYTHON S.E. 30 hrs 79 VAP

Training Coordinator Head of Department
Mr. Lokesh Giripunje Dr.. Priya Charles

7. Printed lab manual of DBMS(E&TC department) provided to students

DR. D. Y. PATIL INSTITUTE OF ENGINEERING, MANAGEMENT AND

RESEARCH, AKURDI, PUNE-44

Department of

Electronics & Telecommunication

2021-2022

LAB MANUAL

Subject – Data Base Management Lab

Subject code: 304187

Class – TE

Program Outcomes

Engineering Graduates will be able to:

1. Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals and E&TC engineering specialization

to the solution of complex E&TC engineering problems

PO1.a – Apply the knowledge of mathematics

PO1.b – Apply the knowledge of science

PO1.c – Apply the knowledge of engineering fundamentals

2. Problem Analysis: Identify and analyze complex engineering problems using first principles of mathematics, natural sciences, and E&TC

engineering science

PO2.a – Identify the engineering problem

PO2.b – analyze the engineering problem

PO3.c – reaching the conclusion for the problem

3. Design /development of Solution: Design solutions for E&TC engineering problems and design system components for real life

PO3.a – Design solution for engineering problems

PO3.b – Design system components for real life solution

4. Conduct investigations of complex problems: Use Engineering knowledge for analysis and interpretation of data, and synthesis of the

information to provide valid conclusions.

PO4.a – analysis of data

PO4.b – Interpretation of data

PO4.c – synthesis of data for valid conclusion

5. Modern tool Usage: select and apply appropriate techniques, using IT tools to model E&TC engineering problems with an understanding

of the limitations.

PO5.a – Select and apply appropriate technique

PO5.b – knowledge of various IT tools

PO5.b – Use IT tools to model E&TC engineering problems

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural

issues and the consequent responsibilities relevant to the professional E&TC engineering practice.

PO6.a – ability to identify the problem

PO6.b – assess the problem

PO6.c – apply the engineering solution

7. Environment and sustainability: Understand the impact of the E&TC engineering solutions in societal and environmental contexts, and

demonstrate the knowledge of, and need for sustainable development.

PO7.a – understand the impact of E&TC engineering solutions

PO7.b – demonstrate the knowledge for sustainable development

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the E&TC engineering practice.

PO8.a – have awareness of ethical principles

PO8.b - be committed to professional ethics

9. Individual and team work: Function effectively as an individual , and as a member or leader in a team

PO9.a – ability to function effectively as an individual

PO9.b – ability to function as a leader in a team

10. Communication: Communicate effectively ,comprehend and write effective reports and make effective presentations

PO10.a – ability to communicate effectively

PO10.b – ability to comprehend and write effective reports

PO10.c – ability to make effective presentations

11. Project management and finance: Have knowledge and understanding of the E&TC engineering and management principles and apply

these to one’s own work, as a member and leader in a team, to manage projects

PO11.a – Ability to have the knowledge and understanding of Engineering and Management principles

PO11.b – apply managerial skills effectively as a leader

PO11.c – Apply the E&TC engineering skills as a team member

12. Life-long learning: Ability of self-education and understand the technological changes PO12.a – Inculcate the habit of self-learning and

understanding

PO12.b – ability to adapt to technological changes

Vision:

To impart quality education to produce competent E&TC Engineers

Mission:

1. To equip students with strong basics through excellent blend of theory and

practical knowledge

2. To inculcate creativity and innovation through curricular and co-curricular

activities

3. To give the knowledge about all possible areas of E&TC by interacting with

professional world

4. To develop the students with communication skills and ethical standards to

meet the professional needs

PSOs:

The E&TC engineering graduates should be able to

1) Apply principles of Electronics and communication , digital systems, signal

processing, software programming in the field of Embedded,

Telecommunication & Software services for real world applications

2) Comprehend the technological advancements, demonstrate the proficiency in

the usage of engineering tools to analyze and design systems for variety of

applications.

3) Demonstrate professional ethics , apply communication skills for successful

career and higher studies

PEOs:

1) The graduate shall utilize the basic knowledge to address the Engineering

problems

2) The graduate shall attain the qualities of professional leadership with ethical

and moral standards

3) The graduate shall develop their capabilities for lifelong learning throughout

their professional career and higher education

4) The graduate shall explore engineering capabilities through creativity and

innovation.

Course Outcomes:

University

course

Code

SAR

course

code

COURSE OUTCOMES

304187

C304.1 Ability to learn and understand various DDL queries like create, drop, truncate, DML

queries like insert, select, update, delete. all types of Join and Sub-Query, and to

demonstrate creating and dropping SQL objects like table, view, sequence, index etc.

C304.2 Ability to learn and understand PL/SQL, to implement all types of Cursors(All types:

Implicit, Explicit, Cursor FOR Loop, Parameterized Cursor), Stored Procedure and

function, for writing Database Triggers(Row level and Statement level triggers,

Before and After Triggers).

C304.3 Ability to Implement MYSQL/Oracle database connectivity with PHP/python/Java Implement

Database navigation operations (add, delete, edit,) using ODBC/JDBC.

C304.4 Ability to design and develop database application as a mini project

CO and PO Mapping for DBMS Lab:

CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PSO1 PSO2 PSO3 PO12

C304.1 2 1 1 1 1 1 - - 2 2 2 2 2 2 2

C304.2 1 2 2 1 1 1 - - 2 2 2 2 2 2 2

C304.3 1 1 2 1 1 1 - - 2 2 2 2 1 1 2

C304.4 1 1 2 1 1 1 - - 2 2 2 2 1 1 2

Guidelines for Student's Lab Journal

• The laboratory assignments/experiments are to be submitted by student in the form of journal.

• Journal consists of Certificate, table of contents, and handwritten write-up for each experiment.

• Each experiment should consist of:

 Assignment No

 Title of Assignment

 Date of Performance

 Date of Submission

 Aims & Objectives

 Theory

 Description of data used

 Results

 Conclusion.

Guidelines for Lab Assessment:

• Continuous assessment of laboratory work is done based on overall performance.

• Each lab assignment/ experiment assessment will assign grade / marks based on parameters with

appropriate weightage.

• Suggested parameters for overall assessment as well as each lab assignment / experiment

assessment include:

✓ Timely completion.

✓ Performance.

✓ Punctuality and neatness.

• The parameters for assessment are to be known to the students at the beginning of the course

INDEX

EXP.

NO.

List of Laboratory Experiments / Assignments

Group A- Database Programming Languages – SQL

1 Study of Open Source Relational Databases: MySQL

2
Design and develop at SQL DDL statements which demonstrate the use of SQL objects such as

Table, View, Index, Sequence and Synonym

3
Design and develop at least 5SQL queries for suitable database application using SQL DML

statements: Insert and Select with operators and functions.

4
Design and develop at least 5 SQL queries for suitable database application using SQL DML

statements: Update and Delete with operators and functions.

5
Design and develop at least 5 SQL queries for suitable database application using SQL DML

statements: all types of Join and Sub-Query.

Group B- Database Programming Languages – PL / SQL

6

Write a PL/SQL block of code for the following requirements:-

Schema: 1. Borrower (Roll no., Name, Date of Issue, Name of Book, Status) 2. Fine (Roll no,

Date, Amt.) • Accept roll no. & name of book from user. • Check the number of days (from date
of issue), if days are between 15 to 30 then fine amount will be Rs 5per day. • If no. of days>30,

per day fine will be Rs 50 per day & for days less than 30, Rs. 5 per day. • After submitting the

book, status will change from I to R. • If condition of fine is true, then details will be stored into

fine table.

Frame the problem statement for writing PL/SQL block in line with above statement.

7

Cursors: (All types: Implicit, Explicit, Cursor FOR Loop, Parameterized Cursor).

Write a PL/SQL block of code using parameterized Cursor that will merge the data available in

the newly created table N_RollCall with the data available in the table O_RollCall. If the data in

the first table already exist in the second table then that data should be skipped. Frame the

separate problem statement for writing PL/SQL block to implement all types of Cursors in line
with above statement. The problem statement should clearly state the requirements.

8

PL/SQL Stored Procedure and Stored Function.

Write a Stored Procedure namely proc_Grade for the categorization of student. If marks scored
by students in examination is <=1500 and marks>=990 then student will be placed in distinction

category if marks scored are between 989 and900 category is first class, if marks 899 and 825

category is Higher Second Class Write a PL/SQL block for using procedure created with above

requirement. Stud_Marks(name, total_marks) Result(Roll,Name, Class). Frame the separate
problem statement for writing PL/SQL Stored Procedure and function, in line with above

statement. The problem statement should clearly state the requirements.

9

Database Trigger (All Types: Row level and Statement level triggers, Before and After

Triggers):

Write a database trigger on Library table. The System should keep track of the records that are

being updated or deleted. The old value of updated or deleted records should be added in
Library_Audit table. Frame the problem statement for writing Database Triggers of all types, in-

line with above statement. The problem statement should clearly state the requirements.

Group C- Mini Project: Database Project Life Cycle

10

Implement MYSQL/Oracle database connectivity with PHP/python/Java Implement Database

navigation operations (add, delete, edit,) using ODBC/JDBC.

11

Using the database concepts covered in Group A & Group B & connectivity concepts covered in

Group C, students in group are expected to design and develop database application with
following details: Requirement Gathering and Scope finalization Database Analysis and

Design: • Design Entity Relationship Model, Relational Model, Database Normalization •

Implementation • Front End : Java/Perl/PHP/Python/Ruby/.net • Backend : MYSQL/Oracle •
Database Connectivity : ODBC/JDBC

Testing: Data Validation Group of students should submit the Project Report which will be

consist of documentation related to different phases of Software Development Life Cycle: Title
of the Project, Abstract, Introduction, scope, Requirements, Data Modeling features, Data

Dictionary, Relational Database Design, Database Normalization, Graphical User Interface,

Source Code, Testing document, Conclusion. Instructor should maintain progress report of mini
project throughout the semester from project group and assign marks as a part of the term work.

Link of the Virtual Lab: http://vlabs.iitb.ac.in/vlabs-dev/labs/dblab/index.php

Learning Resources:

http://vlabs.iitb.ac.in/vlabs-dev/labs/dblab/index.php

Expt. No: 1 1. Study of Open Source Relational Databases : MySQL

AIM:

Study of Open Source Relational Databases : MySQL

OBJECTIVES:

Study of Open Source Relational Databases : MySQL

Theory:

MySQL is a Relational Management Database System(RDBMS), and

ships with no GUI tools to administer MySQL databases or manage

data contained within the databases. Users may use the included

Command line tools, or use MySQL "front-ends", desktop software

and web applications that create and manage MySQL databases, build

database structures, back up data, inspect status, and work with data

records. The official set of MySQL front-end tools, MySQL

workbench is actively developed by Oracle, and is freely available for

use.

Client server system has one or more client process and one or more

server processes,and a client process can send a query to any one

server process.Clients are responsible for user-interface issues,and

servers manages data and execute transaction .Thus, aclient process could run on a personal computer and

send queries to a server to a server running on a mainframe

Introduction to DBMS

A database management system (DBMS) refers to the technology for creating and managing

databases. DBMS is a software tool to organize (create, retrieve, update, and manage) data in a

database.

Component of DBMS:

 Users: Users may be of any kind such as DB administrator, System developer, or database

users.

 Database application: Database application may be Departmental, Personal, organization's

and / or Internal.

 DBMS: Software that allows users to create and manipulate database access,

 Database: Collection of logical data as a single unit.

INTRODUCTION TO SQL:

Pronounced as SEQUEL: Structured English QUERY Language

 Pure non-procedural query language

 Designed and developed by IBM, Implemented by Oracle

 1978 System/R IBM- 1st Relational DBMS

 1979 Oracle and Ingres

 1982 SQL/DS and DB2 IBM

 Accepted by both ANSI + ISO as Standard Query Language for any RDBMS

 SQL86 (SQL1) : first by ANSI and ratified by ISO (SQL-87), minor revision on 89

 (SQL-89)

 SQL92 (SQL2) : major revision

 SQL99 (SQL3) : add recursive query, trigger, some OO features, and non-scholar

type

 SQL2003 : XML, Window

functions, and sequences

(Not free)

 Supports all the three sublanguages

of DBMS: DDL, DML,

DCL

MYSQL Installation Process:

Installation Process –

Step 1: double click on this first software file

1.mysql-essential-5.1.67-win32.msi

Use following credentials:

port no: 3306

username: root

password: root

hostname: localhost

Step 2: After installation of mysql essential,

Double click this second software file

2.mysql-gui-tools-5.0-r17-win32.msi

Step 3: After installation of mysql-gui-tools

Double click this third software file

3.mysql-workbench-gpl-5.2.44-win32.msi

Data Definition in SQL

CREATE, ALTER and DROP

table .. relation

row ... tuple

column… .. attribute

DATA TYPES

 Numeric: NUMBER, NUMBER(s,p), INTEGER, INT, FLOAT, DECIMAL

 Character: CHAR(n), VARCHAR(n), VARCHAR2(n), CHAR VARYING(n)

 Bit String: BLOB, CLOB

 Boolean: true, false, and null

Components of SQL:

1) DDL (Data Definition Language)

-This SQL syntax is used to create, modify and delete database structures.DDL syntax cannot be

applied to the manipulation of business data.DDL is almost always used by the database administrator, a

database schema implementer or an application developer. Every DDL command implicitly issues a

COMMIT making permanent all changes in the database.

Examples:

 CREATE: Create objects in database schema.

 ALTER: Alters the structure of objects that exist within the database schema.

 DROP: Drops objects that exist within database schema.

 TRUNCATE: Removes all records from a table, including all space allocated for the records.

 COMMENT:Adds comments ,generally used for proper documentation of a database schema.

2)DML(Data Manipulation Language)

-It is the SQL syntax that allows manipulating data within database tables.

Examples: INSERT, UPDATE, DELETE.

3)DCL(Data Control Language)

-It controls access to the database and table data. Occasionally DCL statements are grouped

with DML statements.

Examples:

COMMIT,SAVEPOINT,ROLLBACK,SET TRANSACTION

 The commands used in MySQL are:

1) CREATE :

The CREATE command is used to create a database or create a table in a particular database.

i) FOR CREATING A DATABASE :

Syntax:

create database database_name; //for creating a database

Example:

create database Student_info //Student_info database is created

ii)FOR CREATINGA TABLE:

The table creation command requires:

Name of the table

Names of fields

Definitions for each field

Syntax:

CREATE TABLE table_name (column_name1 column_type, column_name2 column_type,.);

Example:

create table Student(Roll_no tinyint PRIMARY KEY,Fname varchar(20) NOT NULL,Lname

varchar(20),Mob_no char(10));

2) ALTER:MySQLALTER command is used to change a name of your table, any table field or if you want

to add or delete an existing column in a table.

Syntax:

i)DROP- Used to delete a particular column.

Syntax: mysql> ALTER TABLE table_name DROP i; //i is the row you want to delete.

ii)ADD-Used to add a particular column to an existing table.

Syntax:mysql> ALTER TABLE table_name ADD i int;

iii) CHANGE- Used to change a column's definition, use MODIFY or CHANGE clause along with ALTER

command. After the CHANGE keyword, you name the column you want to change, then specify the new

definition, which includes the new name

Syntax:

For example, to change column c from CHAR(1) to CHAR(10), do this:

mysql> ALTER TABLE table_name MODIFY c CHAR(10);

mysql> ALTER TABLE testalter_tbl CHANGE i j BIGINT;

3) DELETE:used to delete a record from any MySQL table, then you can use SQL command DELETE

FROM.

Syntax:

DELETE FROM table_name [WHERE Clause]

INDEX: Indexing is the way of keeping table column data sorted so that searching and locating data

consumes less time.Hence indexes essentially improve the speed at which records can be located and

retrieved from a table.

Types of Index:

SIMPLE INDEX: An index created on single column data is called Simple index.

COMPOSITE INDEX: An index created on multiple column data is called a composite index.

1) CREATE INDEX: A database index is a data structure that improves the speed of operations in a table.

Indexes can be created using one or more columns, providing the basis for both rapid random lookups and

efficient ordering of access to records.

Syntax:

CREATE UNIQUE INDEX index_name ON table_name (column1, column2,...);

2) DELETE INDEX: Used to delete any index.

Syntax:

mysql> ALTER TABLE table_name DROP INDEX (c);

VIEWS: A view is a table whoes rows are not explicitly stored in the database but are computed as needed

from a view definition. To reduce redundant data to the minimum possible, MySQL allows creation of an

object called a view .A view is mapped to a SELECT statement. This technique offers a simple, effective

way of hiding columns of a table.

S.name,S.sid,S.cid

FROM stud S,Enrolled E

1) CREATE VIEW: Used to create a view.

Syntax:

mysql> CREATE VIEW database_name.view_name AS SELECT * FROM table_name;

Example:

CREATE VIEW stud_info(name,sid,course)

AS SELECT S.name,S.sid,S.cid

FROM stud S,Enrolled EWHERE S.sid AND E.grade='B'

2) DELETE VIEW: DROP view removes one or more views.

Syntax:

mysql>DROP view viewname;

Example:

DROP view stud_info;

Conclusion:

Thus we studied Open Source Relational Databases: MySQL successfully.

AIM:

Study of Design and Develop SQL DDL statements which demonstrate the use of SQL objects such

as Table, View, Index, Sequence, Synonym

OBJECTIVES:

Study of Design and Develop SQL DDL statements which demonstrate the use of SQL objects such

as Table, View, Index, Sequence, Synonym

Problem Statement:

(Create following tables with constraints, alter table, insert, drop table , rename table, view, index,

synonym, sequence/AUTO_INCREMENT)

Account(Acc_no, branch_name,balance)

branch(branch_name,branch_city,assets)

customer(cust_name,cust_street,cust_city)

Depositor(cust_name,acc_no)

Loan(loan_no,branch_name,amount)

Borrower(cust_name,loan_no)

Theory:

A schema is the collection of multiple database objects, which are known as schema objects. These objects

have direct access by their owner schema. Below table lists the schema objects.

 Table - to store data

 View - to project data in a desired format from one or more tables

 Sequence - to generate numeric values

 Index - to improve performance of queries on the tables

 Synonym - alternative name of an object

One of the first steps in creating a database is to create the tables that will store an organization's

data.Database design involves identifying system user requirements for various organizational systems such

as order entry, inventory management, and accounts receivable. Regardless of database size and complexity,

each database is comprised of tables.

Table of Contents

1. DDL

2. DML

3. DCL

4. TCL

DDL

DDL is short name of Data Definition Language, which deals with database schemas and descriptions, of

how the data should reside in the database.

 CREATE - to create a database and its objects like (table, index, views, store procedure, function,

and triggers)

Design and Develop SQL DDL statements which demonstrate the use

of SQL objects such as Table, View, Index, Sequence, Synonym

Expt. No: 2

https://www.w3schools.in/mysql/ddl-dml-dcl/#DDL
https://www.w3schools.in/mysql/ddl-dml-dcl/#DML
https://www.w3schools.in/mysql/ddl-dml-dcl/#DCL
https://www.w3schools.in/mysql/ddl-dml-dcl/#TCL
https://www.w3schools.in/mysql/php-mysql-create/

 ALTER - alters the structure of the existing database

 DROP - delete objects from the database

 TRUNCATE - remove all records from a table, including all spaces allocated for the records are

removed

 COMMENT - add comments to the data dictionary

 RENAME - rename an object

DML

DML is short name of Data Manipulation Language which deals with data manipulation and includes most

common SQL statements such SELECT, INSERT, UPDATE, DELETE, etc., and it is used to store, modify,

retrieve, delete and update data in a database.

 SELECT - retrieve data from a database

 INSERT - insert data into a table

 UPDATE - updates existing data within a table

 DELETE - Delete all records from a database table

 MERGE - UPSERT operation (insert or update)

 CALL - call a PL/SQL or Java subprogram

 EXPLAIN PLAN - interpretation of the data access path

 LOCK TABLE - concurrency Control

DCL

DCL is short name of Data Control Language which includes commands such as GRANT and mostly

concerned with rights, permissions and other controls of the database system.

 GRANT - allow users access privileges to the database

 REVOKE - withdraw users access privileges given by using the GRANT command

TCL

TCL is short name of Transaction Control Language which deals with a transaction within a database.

 COMMIT - commits a Transaction

 ROLLBACK - rollback a transaction in case of any error occurs

 SAVEPOINT - to rollback the transaction making points within groups

 SET TRANSACTION - specify characteristics of the transaction

SQL Statements For Tables

char(n). Fixed length character string, with user-specified length n.

varchar(n). Variable length character strings, with user-specified maximumlength n.

int. Integer (afinite subset oftheintegers that is machine-dependent).

smallint. Small integer (a machine-dependent subset of the integer domain type).

numeric(p,d). Fixedpoint number, with user-specifiedprecision of pdigits, with n digits tothe right of

decimal point.

real, double precision. Floatingpoint anddouble-precisionfloatingpoint numbers, with machine-dependent precision.

float(n). Floatingpoint number, with user-specified precision ofatleast ndigits.

Constraints

Constraints are the set of rules defined in Oracle tables to ensure data integrity.These rules are enforced

placed for each column or set of columns.Whenever the table participates in data action, these rules are

validated and raise exception upon violation. The available constraint types are NOT NULL, Primary Key,

Unique, Check, and Foreign Key.

The below syntax can be used to impose constraint at the column level.

Syntax:

column [data type] [CONSTRAINT constraint_name] constraint_type

https://www.w3schools.in/mysql/php-mysql-select/
https://www.w3schools.in/mysql/php-mysql-insert/
https://www.w3schools.in/mysql/php-mysql-update/
https://www.w3schools.in/mysql/php-mysql-delete/

All constraints except NOT NULL, can also be defined at the table level. Composite constraints can only be

specified at the table level.

NOT NULL Constraint

A NOT NULL constraint means that a data row must have a value for the column specified as NOT NULL.If

a column is specified as NOT NULL,the Oracle RDBMS will not allow rows to be stored to the employee

table that violate this constraint.It can only be defined at column level, and not at the table level.

Syntax:

COLUMN [data type] [NOT NULL]

UNIQUE constraint

Sometimes it is necessary to enforce uniqueness for a column value that is not a primary key column.The

UNIQUE constraint can be used to enforce this rule and Oracle will reject any rows that violate the unique

constraint.Unique constraint ensures that the column values are distinct, without any duplicates.

Syntax:

Column Level:

COLUMN [data type] [CONSTRAINT <name>] [UNIQUE]

Table Level: CONSTRAINT [constraint name] UNIQUE (column name)

Note: Oracle internally creates unique index to prevent duplication in the column values.Indexes would be

discussed later in PL/SQL.

CREATE TABLE TEST

(... ,

NAME VARCHAR2(20)

CONSTRAINT TEST_NAME_UK UNIQUE,

...);

In case of composite unique key,it must be defined at table level as below.

CREATE TABLE TEST

(... ,

NAME VARCHAR2(20),

STD VARCHAR2(20) ,

CONSTRAINT TEST_NAME_UK UNIQUE (NAME, STD)

);

Primary Key

Each table must normally contain a column or set of columns that uniquely identifies rows of data that are

stored in the table.This column or set of columns is referred to as the primary key.Most tables have a single

column as the primary key.Primary key columns are restricted against NULLs and duplicate values.

Points to be noted -

 A table can have only one primary key.

 Multiple columns can be clubbed under a composite primary key.

 Oracle internally creates unique index to prevent duplication in the column values.Indexes would be

discussed later in PL/SQL.

Syntax:

Column level:

COLUMN [data type] [CONSTRAINT <constraint name> PRIMARY KEY]

Table level:

CONSTRAINT [constraint name] PRIMARY KEY [column (s)]

The following example shows how to use PRIMARY KEY constraint at column level.

CREATE TABLE TEST (ID NUMBER CONSTRAINT TEST_PK PRIMARY KEY, ...);

The following example shows how to define composite primary key using PRIMARY KEY constraint at the

table level.

CREATE TABLE TEST (..., CONSTRAINT TEST_PK PRIMARY KEY (ID));

Foreign Key

When two tables share the parent child relationship based on specific column, the joining column in

the child table is known as Foreign Key. This property of corresponding column in the parent table is known

as Referential integrity. Foreign Key column values in the child table can either be null or must be the

existing values of the parent table. Please note that only primary key columns of the referenced table are

eligible to enforce referential integrity.

If a foreign key is defined on the column in child table then Oracle does not allow the parent row to be

deleted, if it contains any child rows. However, if ON DELETE CASCADE option is given at the time of

defining foreign key, Oracle deletes all child rows while parent row is being deleted. Similarly, ON DELETE

SET NULL indicates that when a row in the parent table is deleted, the foreign key values are set to null.

Syntax:

Column Level:

COLUMN [data type] [CONSTRAINT] [constraint name] [REFERENCES] [table name (column name)]

Table level:

CONSTRAINT [constraint name] [FOREIGN KEY (foreign key column name) REFERENCES] [referenced

table name (referenced column name)]

The following example shows how to use FOREIGN KEY constraint at column level.

CREATE TABLE TEST (ccode varchar2(5) CONSTRAINT TEST_FK REFERENCES

PARENT_TEST(ccode), ...);

Usage of ON DELETE CASCADE clause

CREATE TABLE TEST (ccode varchar2(5) CONSTRAINT TEST_FK REFERENCES PARENT_TEST

(ccode) ON DELETE CASCADE, ...);

Check constraint

Sometimes the data values stored in a specific column must fall within some acceptable range of values. A

CHECK constraint requires that the specified check condition is either true or unknown for each row stored

in the table. Check constraint allows to impose a conditional rule on a column, which must be validated

before data is

inserted into the column. The condition must not contain a sub query or pseudo column CURRVAL

NEXTVAL, LEVEL, ROWNUM, or SYSDATE.

Oracle allows a single column to have more than one CHECK constraint. In fact, there is no practical limit to

the number of CHECK constraints that can be defined for a column.

Syntax:

Column level:

COLUMN [data type] CONSTRAINT [name] [CHECK (condition)]

Table level:

CONSTRAINT [name] CHECK (condition)

The following example shows how to use CHECK constraint at column level.

CREATE TABLE TEST (..., GRADE char (1) CONSTRAINT TEST_CHK CHECK (upper (GRADE) in

('A','B','C')), ...);

The following example shows how to use CHECK constraint at table level.

CREATE TABLE TEST (..., CONSTRAINT TEST_CHK CHECK (stdate < = enddate),);

create database Student;

show databases;

use Student;

drop database Student;

DDL : create, desc, alter, drop, rename,

create table <table_name> (column_name1 dat_type(size) [constraint], column_name2 data_type(size)

[constraint],. .. column_nameN dat_type(size) [constraint]);

create table Student_info(RollNO integer(10) NOT NULL, Name varchar(30), MobNo integer(10));

desc student_info;

show tables;

drop table student_info;

alter table student_info add(emailid varchar(30));

alter table student_info modify(emailid char(10));

rename Student_info to Stud_data;

create index idx on student_info(rollno);

alter table student_info drop index idx;

index::

show databases;

use student;

show tables;

desc student_info;

Create table using subquery

A table can be created from an existing table in the database using a subquery option. It copies the table

structure as well as the data from the table. Data can also be copied based on conditions. The column data

type definitions including the explicitly imposed NOT NULL constraints are copied into the new table.

The below CTAS script creates a new table EMP_BACKUP. Employee data of department 20 gets copied

into the new table

.

CREATE TABLE EMP_BACKUP

AS

SELECT * FROM EMP_TEST

WHERE department_id=20;

SQL CREATE INDEX Statement

The CREATE INDEX statement is used to create indexes in tables.

Indexes are used to retrieve data from the database very fast. The users cannot see the indexes, they are just

used to speed up searches/queries.

Note: Updating a table with indexes takes more time than updating a table without (because the indexes also

need an update).

So, only create indexes on columns that will be frequently searched against.

CREATE INDEX Syntax

Creates an index on a table. Duplicate values are allowed:

CREATE INDEX index_name

ON table_name (column1, column2, ...);

Example:

create index roll_no on student_info(rollno);

alter table student_info drop index roll_no;

CREATE UNIQUE INDEX Syntax

Creates a unique index on a table. Duplicate values are not allowed:

CREATE UNIQUE INDEX index_name

ON table_name (column1, column2, ...);

Note: The syntax for creating indexes varies among different databases. Therefore: Check the syntax for

creating indexes in your database.

CREATE INDEX Example

The SQL statement below creates an index named "idx_lastname" on the "LastName" column in the

"Persons" table:

CREATE INDEX idx_lastname

ON Persons (LastName);

If you want to create an index on a combination of columns, you can list the column names within the

parentheses, separated by commas:

CREATE INDEX idx_pname

ON Persons (LastName, FirstName);

DROP INDEX Statement

The DROP INDEX statement is used to delete an index in a table.

MS Access:

DROP INDEX index_name ON table_name;

SQL Server:

DROP INDEX table_name.index_name;

DB2/Oracle:

DROP INDEX index_name;

MySQL:

ALTER TABLE table_name

DROP INDEX index_name;

SQL Sequence

Sequence is a feature supported by some database systems to produce unique values on demand. Some

DBMS like MySQL supports AUTO_INCREMENT in place of Sequence. AUTO_INCREMENT is

applied on columns, it automatically increments the column value by 1 each time a new record is entered into

the table. Sequence is also some what similar to AUTO_INCREMENT but it has some extra features.

create table Student_info(RollNO integer(10) Primary key AUTO_INCREMENT, Name varchar(30),

MobNo integer(10));

insert into Student_info (Name, MobNo) values (‘Amol’, 9049417616);

insert into Student_info (Name, MobNo) values (‘Amol’, 9049417616);

Creating Sequence

Syntax to create sequences is,

CREATE Sequence sequence-name

start with initial-value

increment by increment-value

maxvalue maximum-value

cycle|nocycle

Initial-value specifies the starting value of the Sequence, increment-value is the value by which sequence

will be incremented and maxvalue specifies the maximum value until which sequence will increment itself.

Cycle specifies that if the maximum value exceeds the set limit, sequence will restart its cycle from the

beginning. No cycle specifies that if sequence exceeds maxvalue an error will be thrown.

Example to create Sequence

The sequence query is following

CREATE Sequence seq_1

start with 1

increment by 1

maxvalue 999

cycle ;

Example to use Sequence

The class table,

ID NAME

1 abhi

2 adam

4 alex

The sql query will be,

INSERT into class value(seq_1.nextval,'anu');

Result table will look like,

ID NAME

1 abhi

2 adam

4 alex

1 anu

Once you use nextval the sequence will increment even if you don't Insert any record into the table.

CREATE SYNONYM:

Examples To define the synonym offices for the table locations in the schema hr, issue the following

statement:

CREATE SYNONYM offices

FOR hr.locations;

To create a PUBLIC synonym for the employees table in the schema hr on the remote database, you could

issue the following statement:

CREATE PUBLIC SYNONYM emp_table

FOR hr.employees@remote.us.oracle.com;

A synonym may have the same name as the underlying object, provided the underlying object is contained in

another schema.

Oracle Database Resolution of Synonyms: Example Oracle Database attempts to resolve references to

objects at the schema level before resolving them at the PUBLIC synonym level. For example, the schemas

oe and sh both

contain tables named customers. In the next example, user SYSTEM creates a PUBLIC synonym named

customers for customers:

CREATE PUBLIC SYNONYM customers FOR oe.customers;

If the user sh then issues the following statement, then the database returns the count of rows from

sh.customers:

SELECT COUNT(*) FROM customers;

To retrieve the count of rows from oe’s.customers, the user sh must preface customers with the schema

name. (The user must have select permission on oe’s.customers as well.)

SELECT COUNT(*) FROM oe.customers;

If the user hr's schema does not contain an object named customers, and if hr has select permission on

.customers, then hr can access the customers table in oe's schema by using the public synonym customers:

SELECT COUNT(*) FROM customers;

SQL CREATE VIEW Statement

In SQL, a view is a virtual table based on the result-set of an SQL statement.

A view contains rows and columns, just like a real table. The fields in a view are fields from one or more real

tables in the database.

You can add SQL functions, WHERE, and JOIN statements to a view and present the data as if the data were

coming from one single table.

CREATE VIEW Syntax

CREATE VIEW view_name AS

SELECT column1, column2, ...

FROM table_name

WHERE condition;

Note: A view always shows up-to-date data! The database engine recreates the data, using the view's SQL

statement, every time a user queries a view.

SQL CREATE VIEW Examples

If you have the Northwind database you can see that it has several views installed by default.

The view "Current Product List" lists all active products (products that are not discontinued) from the

"Products" table. The view is created with the following SQL:

CREATE VIEW [Current Product List] AS

SELECT ProductID, ProductName

FROM Products

WHERE Discontinued = No;

Then, we can query the view as follows:

SELECT * FROM [Current Product List];

Another view in the Northwind sample database selects every product in the "Products" table with a unit

price higher than the average unit price:

CREATE VIEW [Products Above Average Price] AS

SELECT ProductName, UnitPrice

FROM Products

WHERE UnitPrice > (SELECT AVG(UnitPrice) FROM Products);

We can query the view above as follows:

SELECT * FROM [Products Above Average Price];

Another view in the Northwind database calculates the total sale for each category in 1997. Note that this

view selects its data from another view called "Product Sales for 1997":

CREATE VIEW [Category Sales For 1997] AS

SELECT DISTINCT CategoryName, Sum(ProductSales) AS CategorySales

FROM [Product Sales for 1997]

GROUP BY CategoryName;

We can query the view above as follows:

SELECT * FROM [Category Sales For 1997];

We can also add a condition to the query. Let's see the total sale only for the category "Beverages":

SELECT * FROM [Category Sales For 1997]

WHERE CategoryName = 'Beverages';

SQL Updating a View

You can update a view by using the following syntax:

SQL CREATE OR REPLACE VIEW Syntax

CREATE OR REPLACE VIEW view_name AS

SELECT column1, column2, ...

FROM table_name

WHERE condition;

Now we want to add the "Category" column to the "Current Product List" view. We will update the view

with the following SQL:

CREATE OR REPLACE VIEW [Current Product List] AS

SELECT ProductID, ProductName, Category

FROM Products

WHERE Discontinued = No;

SQL Dropping a View

You can delete a view with the DROP VIEW command.

SQL DROP VIEW Syntax

DROP VIEW view_name;

Examples:

insert into student_info values(3,'amol',2154455,'abc@gmai');

insert into student_info values(1,'vijay',21543255,'asvs@gmai');

select * from student_info;

view::

create view myview as select rollno,name from student_info;

select * from myview;

create view myview2 as select rollno,name from student_info where rollno>1;

(Create following tables with constraints, alter table, insert, drop table , rename table, view, index,

synonym, sequence/AUTO_INCREMENT)

Account(Acc_no, branch_name,balance)

branch(branch_name,branch_city,assets)

customer(cust_name,cust_street,cust_city)

Depositor(cust_name,acc_no)

Loan(loan_no,branch_name,amount)

Borrower(cust_name,loan_no)

Solve following queries:

Q1.Create Depositor table with foreign key with on delete cascade constraint on columns

cust_name and acc_no.

Q2. Create Borrower table with foreign key with on delete cascade constraint on columns

cust_name,loan_no.

Q3. Create Account table with primary key and AUTO_INCREMENT constraint on Acc_no

column

Q4. Create Loan table with primary key and AUTO_INCREMENT constraint on loan_no column.

Q5. Create Customer table with primary key constraint on cust_name column.

Q6. Create View on Account table and Loan Table.

Q7. Insert following Data into above tables

Q.8. Create synonym for customer table as cust.

Q.9. Create sequence acc_seq and use in Account table for acc_no column.

Q.10 Insert following data into all above tables.

**************************Problem Statements***********************

Q1. Q1.Create Depositor table with foreign key with on delete cascade constraint on columns

cust_name and acc_no.

Column Level:

SQL> create table depositor (cust_name varchar(20) CONSTRAINT FK_1 REFRENECS

customer(cust_name) ON DELETE CASCADE , acc_no integer(10) CONSTRAINT FK_2

REFRENECS account(acc_no) ON DELETE CASCADE);

Q2. Create Borrower table with foreign key with on delete cascade constraint on columns

cust_name,loan_no

Table level :

SQL> create table borrower (cust_name varchar(20), loan_no integer(10) , CONSTRAINT FK_1

FOREIGN KEY (cust_name) REFRENECS customer(cust_name) ON DELETE CASCADE,

CONSTRAINT FK_2 FOREIGN KEY (loan_no) FK2 REFRENECS loan(loan_no) ON DELETE

CASCADE);

Q3. Create Account table with primary key and AUTO_INCREMENT constraint on Acc_no

column

SQL> create table account (acc_no integer(10) primary key AUTO_INCREMENT, branch_name

varchar(20), balance integer(10));

Q4. Create Loan table with primary key and AUTO_INCREMENT constraint on loan_no column.

SQL> create table loan (loan_no integer(10) primary key AUTO_INCREMENT, branch_name

varchar(20), amount integer(10));

Q5. Create Customer table with primary key constraint on cust_name column.

SQL> create table customer (cust_name varchar(20) primary key, cust_street varchar(20), city

varchar(20));

Q6. Create View on Account table and Loan Table.

SQL> create view ac1 AS (select acc_no, balance from account);

SQL> create view ln1 AS (select loan_no, amount from loan);

Q.7. Create synonym for customer table as cust.

SQL> create public synonym cust2 for customer1;

Synonym created.

Q.8. Create sequence acc_seq and use in Account table for acc_no column.

CREATE Sequence seq_1 start with 1 increment by 1 maxvalue 100000 no cycle ;

Q.9 Insert following data into all above tables.

******************************** Table Structure *********************************

create table Account(Acc_no, branch_name,balance) :

SQL> select * from account;

ACC_NO BRANCH_NAME BALANCE

1001 Akurdi 15000

1002 Nigdi 11000

1003 Chinchwad 20000

1004 Wakad 10000

1005 Akurdi 14000

1006 Nigdi 17000

6 rows selected.

Create table branch(branch_name,branch_city,assets) :

SQL> select * from branch;

BRANCH_NAME BRANCH_CITY ASSETS

Akurdi Pune 200000

Nigdi Pimpri_chinchwad 300000

Wakad Pune 100000

Chinchwad Pimpri_chinchwad 400000
Sangvi Pune 230000

create table customer(cust_name,cust_street,cust_city) :

SQL> select * from customer1;

CUST_NAME CUST_STREET CUST_CITY

Rutuja JM road Pune

Alka Senapati road Pune

Samiksha Savedi road Pimpri_chinchwad

Trupti Lakshmi road Pune

Mahima Pipeline road Pimpri_chinchwad

Ayushi FC road pune

Priti Camp road Pimri_chinchwad

7 rows selected.

Create table Depositor(cust_name,acc_no):

SQL> select * from depositer;

CUST_NAMEACC_NO

Loan(loan_no,branch_name,amount) :

SQL> select * from loan;

Rutuja 1005

Trupti 1002

Samiksha 1004

LOAN_NO BRANCH_NAME

AMMOUNT

2001 Akurdi 2000

2002 Nigdi 1200

2003 Akurdi 1400

2004 Wakad 1350

2005 Chinchwad 1490

2006 Akurdi 12300

2007 Akurdi 14000

7 rows selected.

Create table borrower(cust_name,loan_no) :

SQL> select * from borrower;

CUST_NAME LOAN_NO

Mahima 2005

Trupti 2002

Rutuja 2004

Ayushi 2006

Priti 2007

Conclusion:

Thus we successfully implemented Table, View, Index, Sequence, Synonym MySQL queries.

AIM:

To Design at least 10 SQL queries for suitable database application using SQL DML statements: Insert, Select,

Update, Delete with operators, functions, and set operator.

OBJECTIVES:

To Study and Design SQL queries for suitable database application using SQL DML statements: Insert,

Select, Update, Delete with operators, functions, and set operator.

Problem Statement:

(Insert, Select, Update, Delete, operators, functions, setoperator, all constraints, view, index,

synonym, sequence)

Account(Acc_no, branch_name,balance)

branch(branch_name,branch_city,assets)

customer(cust_name,cust_street,cust_city)

Depositor(cust_name,acc_no)

Loan(loan_no,branch_name,amount)

Borrower(cust_name,loan_no)

Input: insert Data into above tables and fire queries on databases;

Theory:

Set Operators:

The set operations union, intersect, and except operate on relations and correspond to the relational

algebra operations   

Each of the above operations automatically eliminates duplicates; to retain all duplicates use the

corresponding multiset versions union all, intersect all and except all.

Suppose a tuple occurs m times in r and n times in s, then, it occurs:

m + n times in r union all s

min(m,n) times in r intersect all s

max(0, m – n) times in r except all s

Aggregate Functions:

These functions operate on the multiset of values of a column of a relation, and return a value

avg: average value

min: minimum value

max: maximum value

sum: sum of values

count: number of values

Design and develop at least 5SQL queries for suitable database application

using SQL DML statements: Insert and Select with operators and functions,

Update and Delete with operators and functions.

Expt. No: 3 &4

Solve following queries:

Q1. Find the names of all branches in loan relation.

Q2. Find all loan numbers for loans made at Akurdi Branch with loan amount > 12000.

Q3. Find all customers who have a loan from bank. Find their names,loan_no and loan

amount.

Q4. List all customers in alphabetical order who have loan from Akurdi branch.

Q5. Find all customers who have an account or loan or both at bank.

Q6. Find all customers who have both account and loan at bank.

Q7. Find all customer who have account but no loan at the bank.

Q8. Find average account balance at Akurdi branch.

Q9. Find the average account balance at each branch

Q10. Find no. of depositors at each branch.

Q11. Find the branches where average account balance > 12000.

Q12. Find number of tuples in customer relation.

Q13. Calculate total loan amount given by bank.

Q14. Delete all loans with loan amount between 1300 and 1500.

Q15. Delete all tuples at every branch located in Nigdi.

Q.16. Create synonym for customer table as cust.

Q.17. Create sequence roll_seq and use in student table for roll_no column.

Create above tables with appropriate constraints like primary key, foreign key, check constrains, not

null etc.

******************************** Table Structure *********************************

create table Account(Acc_no, branch_name,balance) :

SQL> select * from account;

ACC_NO BRANCH_NAME BALANCE

1001 Akurdi 15000

1002 Nigdi 11000

1003 Chinchwad 20000

1004 Wakad 10000

1005 Akurdi 14000

1006 Nigdi 17000

6 rows selected.

Create table branch(branch_name,branch_city,assets) :

SQL> select * from branch;

BRANCH_NAME BRANCH_CITY ASSETS

Akurdi Pune 200000

Nigdi Pimpri_chinchwad 300000

Wakad Pune 100000

Chinchwad Pimpri_chinchwad 400000

Sangvi Pune 230000

create table customer(cust_name,cust_street,cust_city) :

SQL> select * from customer1;

CUST_NAME CUST_STREET CUST_CITY

Rutuja JM road Pune

Alka Senapati road Pune

Samiksha Savedi road Pimpri_chinchwad

Trupti Lakshmi road Pune

Mahima Pipeline road Pimpri_chinchwad

Ayushi FC road pune
Priti Camp road Pimri_chinchwad

7 rows selected.

Create table Depositor(cust_name,acc_no):

SQL> select * from depositer;

CUST_NAMEACC_NO

Loan(loan_no,branch_name,amount) :

Rutuja 1005

Trupti 1002

Samiksha 1004

SQL> select * from loan;

LOAN_NO BRANCH_NAME AMMOUNT

2001 Akurdi 2000

2002 Nigdi 1200

2003 Akurdi 1400

2004 Wakad 1350

2005 Chinchwad 1490

2006 Akurdi 12300

2007 Akurdi 14000

7 rows selected.

Create table borrower(cust_name,loan_no) :

SQL> select * from borrower;

CUST_NAME LOAN_NO

Mahima 2005

Trupti 2002

Rutuja 2004

Ayushi 2006

Priti 2007

**************************Problem Statements***********************

Q1. Find the names of all branches in loan relation.

SQL>select branch_name from loan;

BRANCH_NAME

Akurdi

Nigdi

Akurdi

Wakad

Chinchwad

Akurdi

Akurdi

7 rows selected.

Q2. Find all loan numbers for loans made at Akurdi Branch with loan amount >12000.

SQL> select loan_no from loan where branch_name='Akurdi' and amount>12000;

LOAN_NO

2006

2007

Q3. Find all customers who have a loan from bank. Find their names, loan_no and loan

amount.

SQL> select b.cust_name,b.loan_no,l.amount from borrower b inner join loan l on

b.loan_no=l.loan_no;

CUST_NAME LOAN_NO AMOUNT

Trupti 2002 1200

Rutuja 2004 1350

Mahima 2005 1490

Ayushi 2006 12300
Priti 2007 14000

Q4. List all customers in alphabetical order who have loan from Akurdi branch.

SQL> select b.cust_name from borrower b inner join loan l on b.loan_no=l.loan_no

where l.branch_name='Akurdi'order by b.cust_name;

CUST_NAME

Ayushi

Priti

Q5. Find all customers who have an account or loan or both at bank.

SQL>select cust_name from depositer union select cust_name from borrower;

CUST_NAME

Ayushi

MahimaPriti

Rutuja

Samiksha

Trupti

6 rows selected.

Q6. Find all customers who have both account and loan at bank.

SQL> select cust_name from depositer intersect select cust_name from borrower;

CUST_NAME

Rutuja

Trupti

Q7. Find all customer who have account but no loan at the bank.

SQL> select cust_name from depositer minus select cust_name from borrower;

CUST_NAME

Samiksha

Q8. Find average account balance at Akurdi branch.

SQL> select avg(balance) from account where branch_name='Akurdi';

AVG(BALANCE)

14500

Q9. Find the average account balance at each branch

SQL> select branch_name,avg(balance) from account group by branch_name;

BRANCH_NAME AVG(BALANCE)

Chinchwad 20000

Nigdi 14000

Wakad 10000
Akurdi 14500

10. Find no. of depositors at each branch.

SQL> select branch_name,count(branch_name) from account a inner join depositer d on

a.acc_no=d.acc_no group by branch_name;

BRANCH_NAME COUNT(BRANCH_NAME)

Nigdi 1

Wakad 1

Akurdi 1

Q11. Find the branches where average account balance > 12000.

SQL> select branch_name from account group by branch_name having avg(balance)>1200;

BRANCH_NAME

Chinchwad

Nigdi

Wakad

Akurdi

Q12. Find number of tuples in customer relation.

SQL> select count(cust_name) no_of_tuples from customer1;

NO_OF_TUPLES

7

Q13. Calculate total loan amount given by bank.

SQL> select sum(amount) total_loan_amount from loan;

TOTAL_LOAN_AMOUNT

33740

Q14. Delete all loans with loan amount between 1300 and 1500.

SQL> delete from loan where amount>1300 and amount<1500;

LOAN_NO BRANCH_NAME AMOUNT

2001 Akurdi 2000

2002 Nigdi 1200

2006 Akurdi 12300
2007 Akurdi 14000

Q15. Delete all tuples at every branch located in Nigdi.

SQL>delete from branch where branch_name='Nigdi';

Q.16. Create synonym for customer table as cust.

SQL> create public synonym cust2 for customer1;

Synonym created.

Q.17. Create sequence roll_seq and use in student table for roll_no column.

Conclusion:

Thus we successfully implemented MySQL queries.

Expt. No: 5 Design and develop at least 5 SQL queries for suitable database

application using SQL DML statements: all types of Join and Sub-

Query.

AIM: To Design at least 5 SQL queries for suitable database application using SQL DML statements: all

types of Join and Sub-Query.

Problem Statement: Design SQL queries for suitable database application using SQL DML

statements: all types of Join, Sub-Query and View.
create database pune_bank;

use pune_bank;

#branch(branch_name,branch_city,assets)

#Account(Acc_no, branch_name,balance)

#Loan(loan_no,branch_name,amount)

#customer(cust_name,cust_street,cust_city)

#Depositor(cust_name,acc_no)

#Borrower(cust_name,loan_no)

1. Create following Tables

cust_mstr(cust_no,fname,lname)

add_dets(code_no,add1,add2,state,city,pincode)

Retrieve the address of customer Fname as 'xyz' and Lname as 'pqr'

2. Create following Tables

cust_mstr(custno,fname,lname)

acc_fd_cust_dets(codeno,acc_fd_no)

fd_dets(fd_sr_no,amt)

List the customer holding fixed deposit of amount more than 5000

3. Create following Tables

emp_mstr(e_mpno,f_name,l_name,m_name,dept,desg,branch_no)

branch_mstr(name,b_no)

List the employee details along with branch names to which they belong

4. Create following Tables

emp_mstr(emp_no,f_name,l_name,m_name,dept)

cntc_dets(code_no,cntc_type,cntc_data)

List the employee details along with contact details using left outer join & right join

5. Create following Tables

cust_mstr(cust_no,fname,lname)

add_dets(code_no,pincode)

List the customer who do not have bank branches in their vicinity.

6. a) Create View on borrower table by selecting any two columns and perform insert update

delete operations

b) Create view on borrower and depositor table by selecting any one column from each table

perform insert update delete operations

c) create updateable view on borrower table by selecting any two columns and perform insert,

update and delete operations.

Solutions:

1. Create following Tables
cust_mstr(cust_no,fname,lname)

add_dets(code_no,add1,add2,state,city,pincode)

Retrieve the address of customer Fname as 'Rutuja' and Lname as 'Deshmane'

SQL> select * from cust_mstr;

CUSTNO FNAME LNAME

C101 Rutuja Deshmane

C102 Trupti Bargaje

C103 Samiksha Dharmadhikari
C104 Mahima Khandelwal

SQL> select add1,add2 from add_dets where code_no in(select custno from cust_mstr where fname='Rutuja'

and lname='Deshmane');

ADD1 ADD2

venu nagar dange chowk

2. Create following Tables

cust_mstr(custno,fname,lname)

acc_fd_cust_dets(codeno,acc_fd_no)
fd_dets(fd_sr_no,amt)

List the customer holding fixed deposit of amount more than 5000

SQL> select fname,lname from cust_mstr where custno in(select codeno from acc_fd_cust_dets where
acc_fd_no in(select fd_sr_no from fd_dets where amt>5000));

FNAME LNAME

Rutuja Deshmane
Samiksha Dharmadhikari

3. Create following Tables
emp_mstr(e_mpno,f_name,l_name,m_name,dept,desg,branch_no)

branch_mstr(name,b_no)

List the employee details along with branch names to which they belong

SQL> select emp_no,fname,lname,mname,dept,desg,branch_no,b.name from emp_mstr e inner join
branch_tb b on e.branch_no=b.b_no;

EMP_NO FNAME LNAME MNAME DEPT DESG BRANCH_NO NAME

1011 Samarth Deshmane Suryakant sports trainer 2011 Akurdi

1012 Alka Choudhari Rohitash comp tester 2012 nigdi
1013 Shriyash Shingare Santosh comp coder 2013 chinchwad

4. Create following Tables
emp_mstr(emp_no,f_name,l_name,m_name,dept)

cntc_dets(code_no,cntc_type,cntc_data)

List the employee details along with contact details using left outer join & right join

SQL> select emp_no,fname,lname,mname,dept,c.code_no,c.cntc_type,c.cntc_data from emp_mstr e left

outer join cntc_dets c on e.emp_no=c.code_no;

EMP_NO FNAME LNAME MNAME DEPT CODE_NO CNTC_TYPE CNTC_DATA

1011 Samarth Deshmane Suryakant sports 1011 phno 9689349523

1012 Alka Choudhari Rohitash comp 1012 email rutu@gmail.com
1013 Shriyash Shingare Santosh comp

SQL> select emp_no,fname,lname,mname,dept,c.code_no,c.cntc_type,c.cntc_data from emp_mstr e right

outer join cntc_dets c on e.emp_no=c.code_no;

CNTC_DATA

9689349523

rutu@gmail.com

shrink@gmail.com

5. Create following Tables

cust_mstr(cust_no,fname,lname)

add_dets(code_no,pincode)

List the customer who do not have bank branches in their vicinity.

SQL> select * from cust_mstr where cust_no in (select code_no from add_dets where code_no like 'C%' and

pincode not in (select pincode from add_dets where code_no like 'B%'));

EMP_NO FNAME LNAME MNAME DEPT CODE_NO CNTC_TYPE

1011 Samarth Deshmane Suryakant sports 1011 phno

1012 Alka Choudhari Rohitash comp 1012 email
1014 email

mailto:rutu@gmail.com
mailto:rutu@gmail.com
mailto:shrink@gmail.com

CUST_NO FNAME LNAME

C102 Trupti Bargaje

6. A) Create View on borrower table by selecting any two columns and perform insert update delete
operations

SQL> select * from borrower;

ACC_NO NAME AMOUNT

101 Aish 10000

102 Adi 10000
103 Swati 45216

SQL> create view b1 as select name, amount from borrower;

View created.

SQL> select * from b1;

NAME AMOUNT

SQL> update b1 set amount=7845 where name='swati';

1 row updated.

SQL> select * from borrower;

ACC_NO NAME AMOUNT

SQL> delete from b1 where name='swati';

1 row deleted.

SQL> select * from borrower;

ACC_NO NAME AMOUNT

101 Aish 10000

B) Create view on borrower and depositor table by selecting any one column from each table

perform insert update delete operations

SQL> select * from borrower;

ACC_NO NAME AMOUNT

101 Aish 10000

102 Adi 10000

Aish 10000

Adi 10000
Swati 45216

101 Aish 10000
102 Adi 10000
103 Swati 7845

SQL> select * from depositor;

DACC_NO DNAME DAMOUNT

102 Adi 45789

104 Sneha 7895
103 Swati 79854

SQL> create view b3 as select amount loan, damount deposit from borrower, depositor;

View created.

SQL> select * from b3;

LOAN DEPOSIT

10000 45789

10000 7895
10000 79854

C) create updateable view on borrower table by selecting any two columns and perform insert,

Update and delete operations.

SQL> create table borrower(acc_no number(10) primary key,name varchar(10),amount

number(10));

Table created.

SQL> insert into borrower values(&acc,'&name',&amount);
Enter value for acc: 101

Enter value for name: Aish

Enter value for amount: 10000

old 1: insert into borrower values(&acc,'&name',&amount)
new 1: insert into borrower values(101,'aish',10000)

1 row created.

SQL> /

Enter value for acc: 102

Enter value for name: Adi
Enter value for amount: 4500

old 1: insert into borrower values(&acc,'&name',&amount)

new 1: insert into borrower values(102,'adi',4500)

1 row created.

SQL> /
Enter value for acc: 103

Enter value for name: Swati

Enter value for amount: 45216.
old 1: insert into borrower values(&acc,'&name',&amount)

new 1: insert into borrower values(103,'swati',45216.)
1 row created.

SQL> create view bview as select acc_no, amount from borrower;

View created.

SQL> insert into bview values(&acc,&amount);

Enter value for acc: 104

Enter value for amount: 58901
old 1: insert into bview values(&acc,&amount)
new 1: insert into bview values(104,58901)

1 row created.

SQL> select * from borrower;

ACC_NO NAME AMOUNT

101 aish 10000

102 adi 4500
103 swati 45216
104 58901

SQL> update bview set amount=45000 where acc_no=104;

1 row updated.

SQL> select * from borrower;

ACC_NO NAME AMOUNT

101 aish 10000
102 adi 4500

103 swati 45216
104 45000

SQL> select * from bview;

ACC_NO AMOUNT

101 10000

102 4500
103 45216
104 45000

SQL> delete from bview where acc_no=104;
1 row deleted.

SQL> select * from bview;

ACC_NO AMOUNT

101 10000

102 4500

103 45216

Conclusion:

Thus we successfully implemented MySQL queries.

Expt. No: 6 Study of Pl SQL Control Structures and Exception Handling.

Aim: Study of Pl SQL Control Structures and Exception Handling.

Input: Student roll no and attendance is input to Procedure.

Theory:

 The PL/SQL programming language was developed by Oracle Corporation in the late 1980s as

procedural extension language for SQL and the Oracle relational database. Following are certain

notable facts about PL/SQL −

 PL/SQL is a completely portable, high-performance transaction-processing language.

 PL/SQL provides a built-in, interpreted and OS independent programming environment.

 PL/SQL can also directly be called from the command-line SQL*Plus interface.

 Direct call can also be made from external programming language calls to database.

 PL/SQL's general syntax is based on that of ADA and Pascal programming language.

 Apart from Oracle, PL/SQL is available in TimesTen in-memory database and IBM DB2.

Features of PL/SQL

 PL/SQL has the following features −

 PL/SQL is tightly integrated with SQL.

 It offers extensive error checking.

 It offers numerous data types.

 It offers a variety of programming structures.

 It supports structured programming through functions and procedures.

 It supports object-oriented programming.

 It supports the development of web applications and server pages.

Advantages of PL/SQL

 PL/SQL has the following advantages −

 SQL is the standard database language and PL/SQL is strongly integrated with SQL. PL/SQL

supports both static and dynamic SQL. Static SQL supports DML operations and transaction control

from PL/SQL block. In Dynamic SQL, SQL allows embedding DDL statements in PL/SQL blocks.

 PL/SQL allows sending an entire block of statements to the database at one time. This reduces

network traffic and provides high performance for the applications.

 PL/SQL gives high productivity to programmers as it can query, transform, and update data in a

database.

 PL/SQL saves time on design and debugging by strong features, such as exception handling,

encapsulation, data hiding, and object-oriented data types.

 Applications written in PL/SQL are fully portable.

 PL/SQL provides high security level.

 PL/SQL provides access to predefined SQL packages.

 PL/SQL provides support for Object-Oriented Programming.

 PL/SQL provides support for developing Web Applications and Server Pages.

DECLARE :- if you want to decalre a variable in plsql program then it takes place in declare section

BEGIN:- is used to start the working of program and end is used to terminate the begin.

Delimiter is used to run (/)

SET SERVEROUTPUT ON ; is run before every time when you compiled a program in a session.

SET ECHO ON : is optional

DBMS_OUTPUT.PUT_LINE command for e.g. if sal=10 and you want to print it Then it looks like

dbms_output.put_line(‘the salary is ‘ ||sal);

IF STATEMENT

Common syntax

IF condition THEN

statement 1;

ELSE

statement 2;

END IF;

INTO command: is used to catch a value in variable from table under some while condition

Only one value must be returned For e.g. in the above example if there are two people who’s name is john

then it shows error

Exception Handling:

An exception is an error condition during a program execution. PL/SQL supports programmers to catch

such conditions using EXCEPTION block in the program and an appropriate action is taken against the

error condition. There are two types of exceptions −

 System-defined exceptions

 User-defined exceptions

Syntax for Exception Handling

The general syntax for exception handling is as follows. Here you can list down as many exceptions as you

can handle. The default exception will be handled using WHEN others THEN −

DECLARE

<declarations section>

BEGIN

<executable command(s)>

EXCEPTION

<exception handling goes here >

WHEN exception1 THEN

exception1-handling-statements

WHEN exception2 THEN

exception2-handling-statements

WHEN exception3 THEN

exception3-handling-statements

........

WHEN others THEN

exception3-handling-statements

END;

ORACLE :

http://127.0.0.1:8080/apex/f?p=4500:1000:2849714591695263

Problem Statement:

Use of Control structure and Exception handling is mandatory. Write a PL/SQL block of code for

the following requirements: Schema:

1. Borrower(Roll_no, Name, DateofIssue, NameofBook, Status)

2. Fine(Roll_no,Date,Amt)

a) Accept roll_no & name of book from user.

b) Check the number of days (from date of issue), if days are between 15 to 30 then fine

amount will be Rs 5per day.

c) If no. of days>30, per day fine will be Rs 50 per day & for days less than 30, Rs. 5 per day.

d) After submitting the book, status will change from I to R.

e) If condition of fine is true, then details will be stored into fine table.

Solution in Mysql:

Steps are:

1) Create borrower and fine table with primary and foreign keys

2) insert records in borrower table

3) create procedure to insert entries in fine table with exception handling

4) call procedure to calculate fine and display fine table.

mysql> create table borrower(rollin int primary key,name varchar(20),dateofissue date,nameofbook

varchar(20),status varchar(20));

Query OK, 0 rows affected (0.30 sec)

mysql> desc borrower;

+ + + + + + +

| Field | Type | Null | Key | Default | Extra |

+ + + + + + +

| rollin | int(11) | NO | PRI | NULL | |

| name | varchar(20) | YES | | NULL | |

| dateofissue | date | YES | | NULL | |

| nameofbook | varchar(20) | YES | | NULL | |

| status | varchar(20) | YES | | NULL | |

+ + + + + + +

5 rows in set (0.00 sec)

mysql> create table fine(rollno int,foreign key(rollno) references borrower(rollin),returndate date,amount

int);

Query OK, 0 rows affected (0.38 sec)

mysql> desc fine;

+ + + + + + +

| Field | Type | Null | Key | Default | Extra |

+ + + + + + +

| roll_no | int(11) | YES | MUL | NULL | |

| returndate | date | YES | | NULL | |

| amnt | int(11) | YES | | NULL | |

+ + + + + + +

3 rows in set (0.02 sec)

mysql> insert into borrower values(1,'abc','2017-08-01','SEPM','PEN')$

Query OK, 1 row affected (0.16 sec)

mysql> insert into borrower values(2,'xyz','2017-07-01','DBMS','PEN')$

Query OK, 1 row affected (0.08 sec)

mysql> insert into borrower values(3,'pqr','2017-08-15','DBMS','PEN')$

Query OK, 1 row affected (0.03 sec)

mysql> delimiter $

mysql> create procedure calc_fine_lib6(in roll int)

begin

declare fine1 int;

declare noofdays int;

declare issuedate date;

declare exit handler for SQLEXCEPTION select'create table definition';

select dateofissue into issuedate from borrower where rollin=roll;

select datediff(curdate(),issuedate) into noofdays;

if noofdays>15 and noofdays<=30 then

set fine1=noofdays*5;

insert into fine values(roll,curdate(),fine1);

elseif noofdays>30 then

set fine1=((noofdays-30)*50) + 15*5;

insert into fine values(roll,curdate(),fine1);

else

insert into fine values(roll,curdate(),0);

end if;

update borrower set status='return' where rollin=roll;

end $

mysql> call calc_fine_lib6(1)$

Query OK, 0 rows affected (0.09 sec)

mysql> call calc_fine_lib6(2)$

Query OK, 0 rows affected (0.09 sec)

mysql> call calc_fine_lib6(3)$

Query OK, 0 rows affected (0.09 sec)

mysql> select * from fine;

-> $

+ + + +

| roll_no | returndate | amnt |

+ + + +

| 1 | 2017-08-22 | 105 |

| 2 | 2017-08-22 | 780 |

| 3 | 2017-08-22 | 0 |

+ + + +

3 rows in set (0.00 sec)

mysql>drop table fine$

Query OK, 0 rows affected (0.21 sec)

mysql> call calc_fine_lib6(1)$

+ +

| create table definition |

+ +

| create table definition |

+ -+

1 row in set (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

mysql> create table fine(rollno int,foreign key(rollno) references borrower(rollin),returndate date,amount

int)$

Query OK, 0 rows affected (0.34 sec)

mysql> call calc_fine_lib6(1)$

Query OK, 0 rows affected (0.09 sec)

mysql> select * from fine$

+ + + +

| rollno | returndate | amount |

+ + + +

| 1 | 2017-08-22 | 105 |

+ + + +

1 row in set (0.00 sec)

Problem Statement: Consider table Stud(Roll, Att,Status)

Write a PL/SQL block for following requirement and handle the exceptions. Roll no. of student will be

entered by user. Attendance of roll no. entered by user will be checked in Stud table. If attendance is less

than 75% then display the message “Term not granted” and set the status in stud table as “D”. Otherwise

display message “Term granted” and set the status in stud table as “ND”

Solution in Oracle:

SQL> create table stud1(roll_no number(5),attendance number(5),status varchar(7));

Table created.

SQL> select * from stud1;

ROLL_NO ATTENDANCE STATUS

101 80

102 65
103 92

104 55
105 68

SQL> set serveroutput on;

SQL>

declare

roll number(10);

att number(10);

begin

roll:=&roll;

select attendance into att from stud1 where roll_no=roll; if

att<75 then

dbms_output.put_line(roll||'is detained');

update stud1 set status='D' where roll_no=roll;

else

dbms_output.put_line(roll||'is not detained');

update stud1 set status='ND' where roll_no=roll;

end if;

exception

when no_data_found then

dbms_output.put_line(roll||'not found');

end;

/

Enter value for roll: 102

old 5: roll:=&roll;

new 5: roll:=102;

102is detained

PL/SQL procedure successfully completed.

SQL> /

Enter value for roll: 101

old 5: roll:=&roll;

new 5: roll:=101;

101is not detained

PL/SQL procedure successfully completed.

SQL> /

Enter value for roll: 103

old 5: roll:=&roll;

new 5: roll:=103;

103is not detained

PL/SQL procedure successfully completed.

SQL> /

Enter value for roll: 104

old 5: roll:=&roll;

new 5: roll:=104;

104is detained

PL/SQL procedure successfully completed.

SQL> /

Enter value for roll: 105

old 5: roll:=&roll;

new 5: roll:=105;

105is detained

PL/SQL procedure successfully completed.

SQL> select * from stud1;

ROLL_NO ATTENDANCE STATUS

 -

101 80 ND

102 65 D

103 92 ND

104 55 D

Conclusion:

Thus we successfully implemented procedures.

Aim: To Study of all types of Cursor (All types: Implicit, Explicit, Cursor FOR Loop, Parameterized Cursor)

Input: New roll calls and old roll calls

Theory:

Oracle creates a memory area, known as the context area, for processing an SQL statement, which contains

all the information needed for processing the statement; for example, the number of rows processed, etc. A

cursor is a pointer to this context area. PL/SQL controls the context area through a cursor. A cursor holds

the rows (one or more) returned by a SQL statement. The set of rows the cursor holds is referred to as the

active set.

You can name a cursor so that it could be referred to in a program to fetch and process the rows returned by

the SQL statement, one at a time. There are two types of cursors −

 Implicit cursors

 Explicit cursors

Implicit Cursors

Implicit cursors are automatically created by Oracle whenever an SQL statement is executed, when there is

no explicit cursor for the statement. Programmers cannot control the implicit cursors and the information in

it.

Whenever a DML statement (INSERT, UPDATE and DELETE) is issued, an implicit cursor is associated

with this statement. For INSERT operations, the cursor holds the data that needs to be inserted. For

UPDATE and DELETE operations, the cursor identifies the rows that would be affected.

In PL/SQL, you can refer to the most recent implicit cursor as the SQL cursor, which always has attributes

such as %FOUND, %ISOPEN, %NOTFOUND, and %ROWCOUNT. The SQL cursor has additional

attributes, %BULK_ROWCOUNT and %BULK_EXCEPTIONS, designed for use with the FORALL

statement.

%FOUND

Returns TRUE if an INSERT, UPDATE, or DELETE statement affected one or more rows or a SELECT

INTO statement returned one or more rows. Otherwise, it returns FALSE.

%NOTFOUND

The logical opposite of %FOUND. It returns TRUE if an INSERT, UPDATE, or DELETE statement

affected no rows, or a SELECT INTO statement returned no rows. Otherwise, it returns

FALSE.

%ISOPEN

Always returns FALSE for implicit cursors, because Oracle closes the SQL cursor automatically after

executing its associated SQL statement.

%ROWCOUNT

Returns the number of rows affected by an INSERT, UPDATE, or DELETE statement, or returned by a

SELECT INTO statement.

Study of all types of Cursor (All types: Implicit, Explicit, Cursor FOR

Loop, Parameterized Cursor)

Expt. No: 7

Explicit Cursors

Explicit cursors are programmer-defined cursors for gaining more control over the context area. An explicit

cursor should be defined in the declaration section of the PL/SQL Block. It is created on a SELECT

Statement which returns more than one row.

The syntax for creating an explicit cursor is −

CURSOR cursor_name IS select_statement;

Working with an explicit cursor includes the following steps −

 Declaring the cursor for initializing the memory

 Opening the cursor for allocating the memory

 Fetching the cursor for retrieving the data

 Closing the cursor to release the allocated memory

Declaring the Cursor

Declaring the cursor defines the cursor with a name and the associated SELECT statement. For example −

CURSOR c_customers IS

SELECT id, name, address FROM customers;

Opening the Cursor

Opening the cursor allocates the memory for the cursor and makes it ready for fetching the rows returned by

the SQL statement into it. For example, we will open the above defined cursor as follows −

OPEN c_customers;

Fetching the Cursor

Fetching the cursor involves accessing one row at a time. For example, we will fetch rows from the above-

opened cursor as follows −

FETCH c_customers INTO c_id, c_name, c_addr;

Closing the Cursor

Closing the cursor means releasing the allocated memory. For example, we will close the above-opened

cursor as follows −

CLOSE c_customers;

To handle a result set inside a stored procedure, you use a cursor. A cursor allows you to iterate a set of rows

returned by a query and process each row individually.

MySQL cursor is read-only, non-scrollable and asensitive.

 Read-only: you cannot update data in the underlying table through the cursor.

 Non-scrollable: you can only fetch rows in the order determined by the SELECT statement. You

cannot fetch rows in the reversed order. In addition, you cannot skip rows or jump to a specific row

in the result set.

 Asensitive: there are two kinds of cursors: asensitive cursor and insensitive cursor. An asensitive

cursor points to the actual data, whereas an insensitive cursor uses a temporary copy of the data. An

asensitive cursor performs faster than an insensitive cursor because it does not have to make a

temporary copy of data. However, any change that made to the data from other connections will

affect the data that is being used by an asensitive cursor, therefore, it is safer if you do not update the

data that is being used by an asensitive cursor. MySQL cursor is asensitive.

https://www.mysqltutorial.org/mysql-stored-procedure-tutorial.aspx
https://www.mysqltutorial.org/stored-procedures-loop.aspx
https://www.mysqltutorial.org/mysql-select-statement-query-data.aspx

Problem Statement :

Cursors: (All types: Implicit, Explicit, Cursor FOR Loop, Parameterized Cursor)

Write a PL/SQL block of code using parameterized Cursor, that will merge the data available in the

newly created table N_RollCall with the data available in the table O_RollCall. If the data in the

first table already exist in the second table then that data should be skipped.

Solution in MySQL:

Steps are:

1) Create new_roll call and old_roll call tables

2) Insert records in both tables with few records duplication

3) create procedure and use cursor to merge above two tables to finalize roll list without

duplication.

Assignment code:

mysql>create table new_roll(roll int,name varchar(10));

Query OK, 0 rows affected (0.29 sec)

mysql> create table old_roll(roll int,name varchar(10));

Query OK, 0 rows affected (0.28 sec)

mysql> insert into new_roll values(2,'b')$

Query OK, 1 row affected (0.05 sec)

mysql> insert into old_roll values(4,'d')$

Query OK, 1 row affected (0.05 sec)

mysql> insert into old_roll values(3,'bcd')$

Query OK, 1 row affected (0.04 sec)

mysql> insert into old_roll values(1,'bc')$

Query OK, 1 row affected (0.04 sec)

mysql> insert into old_roll values(5,'bch')$

Query OK, 1 row affected (0.04 sec)

mysql> insert into new_roll values(5,'bch')$

Query OK, 1 row affected (0.05 sec)

mysql> insert into new_roll values(1,'bc')$

Query OK, 1 row affected (0.04 sec)

mysql> select * from new_roll$

+ + +

| roll | name |

+ + +

| 2 | b |

| 4 | d |

| 5 | bch |

| 1 | bc |

+ + +

4 rows in set (0.00 sec)

mysql> select * from old_roll$

+ + +

| roll | name |

+ + +

| 2 | b |

| 4 | d |

| 3 | bcd |

| 1 | bc |

| 5 | bch |

+ + +

5 rows in set (0.00 sec)

delimiter $

create procedure roll_list()

begin

declare oldrollnumber int;

declare oldname varchar(10);

declare newrollnumber int;

declare newname varchar(10);

declare done int default false;

declare c1 cursor for select roll,name from old_roll;

declare c2 cursor for select roll,name from new_roll;

declare continue handler for not found set done=true;

open c1;

loop1:loop

fetch c1 into oldrollnumber,oldname;

if done then

leave loop1;

end if;

open c2;

loop2:loop

fetch c2 into newrollnumber,newname;

if done then

insert into new_roll values(oldrollnumber,oldname);

set done=false;

close c2;

leave loop2;

end if;

if oldrollnumber=newrollnumber then

leave loop2;

end if;

end loop;

end loop;

close c1;

end $

mysql> call roll_list()$

Query OK, 1 row affected (0.04 sec)

mysql> select * from new_roll$

+ + +

| roll | name |

+ + +

| 2 | b |

| 4 | d |

| 5 | bch |

| 1 | bc |

| 3 | bcd |

+ + +

5 rows in set (0.01 sec)

Problem Statement 2: The bank manager has decided to activate all those accounts which were

previously marked as inactive for performing no transaction in last 365 days. Write a PL/SQ block

(using implicit cursor) to update the status of account, display an approximate message based on the

no. of rows affected by the update. (Use of %FOUND, %NOTFOUND, %ROWCOUNT)

Solution in Oracle:

Declare

Rows_affe number(10);

Begin

update bankcursor set status='active'where

status='inactive'; Rows_affe:=(SQL%rowcount);

dbms_output.put_line(Rows_affe||' rows are

affected...');

END;

Solution :

SQL> create table bankcursor(acc_no number(10),status varchar(10));

Table created.

SQL> select * from bankcursor;

ACC_NO STATUS

101 active

102 inactive

103 inactive

104 active
105 inactive

SQL>

Declare

Rows_affe number(10);

Begin

update bankcursor set status='active'where status='inactive';

Rows_affe:=(SQL%rowcount);

dbms_output.put_line(Rows_affe||' rows are affected...');

END;

/

3 rows are affected...

PL/SQL procedure successfully completed.

SQL> select * from bankcursor;

ACC_NO STATUS

101 active

102 active

103 active

104 active
105 active

Problem Statement 3: Organization has decided to increase the salary of employees by 10% of

existing salary, who are having salary less than average salary of organization, Whenever such

salary updates takes place, a record for the same is maintained in the increment_salary table.

EMP (E_no , Salary)

increment_salary(E_no ,

Salary) code:

Solution in Oracle:

Declare

Cursor crsr_sal is select e_no,salary from emp2 where salary<(select avg(salary) from emp2);

me_no emp2.e_no%type;

msalary emp2.salary%type;

Begin

open crsr_sal;

if crsr_sal%isopen then

loop

fetch crsr_sal into me_no,msalary;

exit when crsr_sal%notfound;

if crsr_sal%found then

update emp2 set salary=salary+(salary*0.1) where

e_no=me_no; select salary into msalary from emp2 where

e_no=me_no; insert into increament_t values(me_no,msalary);

end if;

end loop;

end if;

end;

SQL> create table emp2(e_no number(10),salary number(10));

Table created.

SQL> select * from emp2;

E_NO SALARY

---------- ----------

101 1000

102 2000

103 113

104 4000

SQL> create table increament_t(eno number(10),sal number(10));

Table created.

SQL>

Declare

Cursor crsr_sal is select e_no,salary from emp2 where salary<(select avg(salary)

from emp2);

me_no emp2.e_no%type;

msalary emp2.salary%type;

Begin

open crsr_sal;

if crsr_sal%isopen then

loop

fetch crsr_sal into me_no,msalary;

exit when crsr_sal%notfound;

if crsr_sal%found then

update emp2 set salary=salary+(salary*0.1) where e_no=me_no; 14

select salary into msalary from emp2 where e_no=me_no;

insert into increament_t values(me_no,msalary);

end if;

end loop;

end if;

end;

/

PL/SQL procedure successfully completed.

SQL> select * from emp2;

E_NO SALARY

---------- ----------

101 1100

102 2000

103 113

104 4000

SQL> select * from increament_t;

ENO SAL

 1100

103 113
Conclusion:

Thus we successfully implemented procedures.

56

Aim: To Study of PL/SQL Stored Procedure and Stored Function.

Input: Students details and marks

Theory:

Procedure:

 A subprogram is a program unit/module that performs a particular task. These subprograms are

combined to form larger programs. This is basically called the 'Modular design'. A subprogram can be

invoked by another subprogram or program which is called the calling program.

 A subprogram can be created −

 At the schema level

 Inside a package

 Inside a PL/SQL block

 At the schema level, subprogram is a standalone subprogram. It is created with the CREATE

PROCEDURE or the CREATE FUNCTION statement. It is stored in the database and can be deleted

with the DROP PROCEDURE or DROP FUNCTION statement.

 A subprogram created inside a package is a packaged subprogram. It is stored in the database and can

be deleted only when the package is deleted with the DROP PACKAGE statement. We will discuss

packages in the chapter 'PL/SQL - Packages'.

 PL/SQL subprograms are named PL/SQL blocks that can be invoked with a set of parameters. PL/SQL

provides two kinds of subprograms −

 Functions − These subprograms return a single value; mainly used to compute and return a value.

 Procedures − These subprograms do not return a value directly; mainly used to perform an action.

 This chapter is going to cover important aspects of a PL/SQL procedure. We will discuss PL/SQL

function in the next chapter.

Creating a Function:

A standalone function is created using the CREATE FUNCTION statement. The simplified syntax for the

CREATE OR REPLACE PROCEDURE statement is as follows −

CREATE [OR REPLACE] FUNCTION function_name

[(parameter_name [IN | OUT | IN OUT] type [, ...])]

RETURN return_datatype

{IS | AS}

BEGIN

< function_body >

END [function_name];

Where,

 function-name specifies the name of the function.

 [OR REPLACE] option allows the modification of an existing function.

 The optional parameter list contains name, mode and types of the parameters. IN represents the value that

will be passed from outside and OUT represents th5e7parameter that will be used to return a value outside

of the procedure.

 The function must contain a return statement.

Study all types of Database Trigger (All Types: Row level and Statement

level triggers, Before and After Triggers).

Expt. No: 8

 The RETURN clause specifies the data type you are going to return from the function.

 function-body contains the executable part.

 The AS keyword is used instead of the IS keyword for creating a standalone function.

Calling a Function

While creating a function, you give a definition of what the function has to do. To use a function, you will have to

call that function to perform the defined task. When a program calls a function, the program control is transferred

to the called function.

A called function performs the defined task and when its return statement is executed or when the last end

statement is reached, it returns the program control back to the main program.

To call a function, you simply need to pass the required parameters along with the function name and if the

function returns a value, then you can store the returned value.

DECLARE

c number(2);

BEGIN

c := totalCustomers();

dbms_output.put_line('Total no. of Customers: ' || c);

END;

/

Problem Statement 1: PL/SQL Stored Procedure and Stored Function.

Write a Stored Procedure namely proc_Grade for the categorization of student. If marks scored by students in

examination is <=1500 and marks>=990 then student will be placed in distinction category if marks scored are

between 989 and900 category is first class, if marks 899 and 825 category is Higher Second Class

Write a PL/SQL block for using procedure created with above requirement.
Stud_Marks(name, total_marks) Result(Roll,Name, Class)

Solution in MySQL:

Steps:

1) create stud_marks and result table with primary and foreign keys

2)insert values in stud_marks

3)write and execute PL/SQL procedure for inserting grades in result table

Assignment is as follows:

mysql> desc stud_marks;

+ + + + + + +

| Field | Type | Null | Key | Default | Extra |

+ + + + + + +

| name | varchar(20) | NO | PRI | NULL | |

| total_marks | int(11) | YES | | NULL | |

58

readloop:loop

fetch c1 into name1,totmarks;

59

+ + + + + + +

2 rows in set (0.01 sec)

mysql> desc result;

+ + + + + + +

| Field | Type | Null | Key | Default | Extra |

+ + + + + + +

| roll | int(11) | YES | | NULL | |

| class | varchar(10) | YES | | NULL | |

| name | varchar(20) | YES | MUL | NULL | |

+ + + + + + +

3 rows in set (0.00 sec)

mysql> insert into stud_marks values('abhijit',1020)$

Query OK, 1 row affected (0.15 sec)

mysql> insert into stud_marks values('anand',979)$

Query OK, 1 row affected (0.04 sec)

mysql> insert into stud_marks values('vijay',864)$

Query OK, 1 row affected (0.04 sec)

mysql> insert into stud_marks values('vikas',755)$

Query OK, 1 row affected (0.03 sec)

Create procedure proc_grade()

begin

declare done int default false;

declare roll int;

declare totmarks int;

declare class varchar(10);

declare name1 varchar(20);

declare c1 cursor for select name,total_marks from stud_marks;

declare continue handler for not found set done=true;

open c1;

set roll=1;

60

if done then

leave readloop;

end if;

if totmarks<=1500 and totmarks>=990 then

insert into result values(roll,'dist',name1);

elseif totmarks<=989 and totmarks>=900 then

insert into result values(roll,'first',name1);

elseif totmarks<=899 and totmarks>=825 then

insert into result values(roll,'HSC',name1);

else

insert into result values(roll,'poor',name1);

end if;

set roll=roll+1;

end loop;

end $

mysql> call proc_grade()$

Query OK, 0 rows affected (0.38 sec)

mysql> select * from result$

+ + + +

| roll | class | name |

+ + + +

| 1 | dist | abhijit |

| 2 | first | anand |

| 3 | HSC | vijay |

| 4 | poor | vikas |

+ + + +

4 rows in set (0.00 sec)

Problem Statement 2. Write a PL/SQL stored Procedure for following requirements and call the

procedure in appropriate PL/SQL block.

1. Borrower(Rollin, Name, DateofIssue, NameofBook, Status)

2. Fine(Roll_no,Date,Amt)

• Accept roll_no & name of book from user.

• Check the number of days (from date of issue), if days are between 15 to 30 then fine amount
will be Rs 5per day.

• If no. of days>30, per day fine will be Rs 50 per day & for days less than 30, Rs. 5 per day.

• After submitting the book, status will change from I to R.

• If condition of fine is true, then details will be stored into fine table

Solution :

SQL>create or replace function cal_fine(diffdate number) return number is

begin

if diffdate<15 then

return 0;

elsif diffdate<30 then

return (5*(diffdate-15));

else

return (50*(diffdate-30)+5*(15));end if;

end;

/

SQL> Declare

troll_no varchar(5);

tdays number(5);

tdate date;

diffdate number(5);

begin

troll_no := '&troll_no';

select to_date(sysdate,'DD-MM-YY')"Now" into tdate from dual;

select ((select to_date(sysdate,'DD-MM-YY')"Now" from dual)-dateofissue) into diffdate

from Borrower

where roll_no=troll_no;

insert into Fine values(troll_no,tdate,cal_fine(diffdate));

update borrower set status = 'R' where roll_no=troll_no;

End;
61

/

62

create function cal_fss(diffdate number) return number is

begin

if diffdate<15 then

return 0;

elsif diffdate<30 then

return (5*(diffdate-15));

else

return (50*(diffdate-30)+5*(15));

end if;

end ;

create table borrower(rollno number primary key, name varchar2(20), dateofissue date, nameofbook

varchar2(20), status varchar2(20));

create table fine(rollno number, foreign key(rollno) references borrower(rollno), returndate date, amount

number);

insert into borrower values(1,'abc',date '2021-06-01','SEPM','I');

insert into borrower values(2,'xyz',date '2021-05-01','OOP','I');

insert into borrower values(3,'pqr',date '2021-06-15','DBMS','I');

insert into borrower values(4,'def',date '2021-06-30','DSA','I');

insert into borrower values(5,'lmn',date '2021-07-05','ADS','I');

create procedure calc_fine_lib3(roll number) is

troll_no number(5);

tdays number(5);

tdate date;

diffdate number(5);

begin

troll_no := roll;

select to_date(sysdate,'DD-MM-YY')"Now" into tdate from dual;

select ((select to_date(sysdate,'DD-MM-YY')"Now" from dual)-dateofissue) into diffdate from Borrower

where rollno=troll_no;

insert into Fine values(troll_no,tdate,cal_fss(diffdate));

update borrower set status = 'R' where rollno=troll_no;

End;

Conclusion:

Thus we have successfully implemented PL/SQL stored procedures.

63

Aim: To Study all types of Database Trigger (All Types: Row level and Statement level triggers, Before and

After Triggers).

Input: Student library books information

Theory:

 Triggers are stored programs, which are automatically executed or fired when some events occur.

Triggers are, in fact, written to be executed in response to any of the following events −

 A database manipulation (DML) statement (DELETE, INSERT, or UPDATE)

 A database definition (DDL) statement (CREATE, ALTER, or DROP).

 A database operation (SERVERERROR, LOGON, LOGOFF, STARTUP, or SHUTDOWN).

 Triggers can be defined on the table, view, schema, or database with which the event is associated.

Benefits of Triggers

 Triggers can be written for the following purposes −

 Generating some derived column values automatically

 Enforcing referential integrity

 Event logging and storing information on table access

 Auditing

 Synchronous replication of tables

 Imposing security authorizations

 Preventing invalid transactions

Creating Triggers

 The syntax for creating a trigger is −

CREATE [OR REPLACE] TRIGGER trigger_name

{BEFORE | AFTER | INSTEAD OF }

{INSERT [OR] | UPDATE [OR] | DELETE}

[OF col_name]

ON table_name

[REFERENCING OLD AS o NEW AS n]

[FOR EACH ROW]

WHEN (condition)

DECLARE

Declaration-statements

BEGIN

Executable-statements

EXCEPTION

Exception-handling-statements

END;

Study all types of Database Trigger (All Types: Row level and Statement

level triggers, Before and After Triggers).

Expt. No: 9

64

Where,

 CREATE [OR REPLACE] TRIGGER trigger_name − Creates or replaces an existing trigger with the

trigger_name.

 {BEFORE | AFTER | INSTEAD OF} − This specifies when the trigger will be executed. The INSTEAD

OF clause is used for creating trigger on a view.

 {INSERT [OR] | UPDATE [OR] | DELETE} − This specifies the DML operation.

 [OF col_name] − This specifies the column name that will be updated.

 [ON table_name] − This specifies the name of the table associated with the trigger.

 [REFERENCING OLD AS o NEW AS n] − This allows you to refer new and old values for various

DML statements, such as INSERT, UPDATE, and DELETE.

 [FOR EACH ROW] − This specifies a row-level trigger, i.e., the trigger will be executed for each row

being affected. Otherwise the trigger will execute just once when the SQL statement is executed, which is

called a table level trigger.

 WHEN (condition) − This provides a condition for rows for which the trigger would fire. This clause is

valid only for row-level triggers.

Problem Statement:

Database Trigger (All Types: Row level and Statement level triggers, Before and After Triggers).

Write a database trigger on Library table. The System should keep track of the records that are being updated or

deleted. The old value of updated or deleted records should be added in Library_Audit table.

Solution in MySQL:

Steps are:

1) Create lib_audit and lib_audit2 tables
2) Insert records in lib_audit

3) create trigger for before update and before delete on lib_audit.

//Trigger for delete on lib_audit

mysql> create table lib_audit(bookid int,bookname varchar(20),price int)$
Query OK, 0 rows affected (0.58 sec)

mysql> create table lib_audit2(bookid int,bookname varchar(20),price int)$
Query OK, 0 rows affected (0.36 sec)

mysql> Create trigger before_delete_lib_audit before delete on lib_audit for each row

begin

insert into lib_audit2 values(old.bookid,old.bookname,old.price);

end$

Query OK, 0 rows affected (0.13 sec)

mysql> insert into lib_audit values(1,'ab',100)$

Query OK, 1 row affected (0.05 sec)

mysql> insert into lib_audit values(2,'cd',10)$
Query OK, 1 row affected (0.05 sec)

mysql> insert into lib_audit values(3,'dg',101)$

Query OK, 1 row affected (0.05 sec)

65

mysql> select * from lib_audit$

+ + + +
| bookid | bookname | price |

+ + + +

| 1 | ab | 100 |
| 2 | cd | 10 |

| 3 | dg | 101 |
+ + + +

3 rows in set (0.00 sec)

mysql> select * from lib_audit2$
Empty set (0.00 sec)

mysql> delete from lib_audit where bookid=1$
Query OK, 1 row affected (0.14 sec)

mysql> select * from lib_audit$
+ + + +

| bookid | bookname | price |
+ + + +

| 2 | cd | 10 |
| 3 | dg | 101 |
+ + + +

2 rows in set (0.00 sec)

mysql> select * from lib_audit2$

+ + + +
| bookid | bookname | price |

+ + + +
| 1 | ab | 100 |
+ + + +

1 row in set (0.00 sec)

mysql> delete from lib_audit where bookid=3$

Query OK, 1 row affected (0.04 sec)

mysql> select * from lib_audit2$

+ + + +
| bookid | bookname | price |

+ + + +

| 1 | ab | 100 |
| 3 | dg | 101 |
+ + + +

2 rows in set (0.00 sec)

//Trigger for update on lib_audit

mysql> Create trigger before_update_lib_audit before update on lib_audit for each row
begin

insert into lib_audit2 values(old.bookid,old.bookname,old.price);

end$

mysql> update lib_audit set bookname='xy' where bookid=2$
Query OK, 1 row affected (0.07 sec)

Rows matched: 1 Changed: 1 Warnings: 0

Conclusion: Thus we have successfully implemented trigger.

mysql> select * from lib_audit$
+ + + +

| bookid | bookname | price |

+ + + +
| 2 | xy | 10 |
+ + + +

1 row in set (0.00 sec)

mysql> select * from lib_audit2$

+ + + +
| bookid | bookname | price |

+ + + +

| 1 | ab | 100 |
| 3 | dg | 101 |

| 2 | cd | 10 |
+ + + +
3 rows in set (0.00 sec)

Problem Statement : Write a update, delete trigger on client mstr table. The System should keep track of the

records that ARE BEING updated or deleted. The old value of updated or deleted records should be added in
audit trade table. (separate implementation using both row and statement triggers).

Solution in Oracle:

Row trigger:

SQL> create or replace trigger t1 after update or delete on client_master 2

for each row

declare
op varchar(10);

begin

if updating then
op:='update';

end if;

if deleting then
op:='Delete'; end if;

into stat values(:old.id,op);
insert into audit_trade values(:old.id,:old.cname);
dbms_output.put_line('Details updated to stat and audit_trade table');

end;

/ Trigger created.
Statement Trigger:
SQL> create or replace trigger t1 after update or delete on client_master 2

for each row

declare
op varchar(10);

begin

if updating then
op:='update';

end if;

if deleting then

op:='Delete'; end if;
into stat values('',op);

insert into audit_trade values(:old.id,:old.cname);

dbms_output.put_line('Details updated to stat and audit_trade table'); end;
/ Trigger created. 66

67

Virtual LAB Links:

1. Lab Name: Database Lab

Link of the Virtual Lab: http://vlabs.iitb.ac.in/vlabs-dev/labs/dblab/index.php

https://nptel.ac.in/courses/108/105/108105158/
http://vlabs.iitb.ac.in/vlabs-dev/labs/dblab/index.php

68

Aim: To implement MYSQL/Oracle database connectivity with PHP/python/Java Implement Database

navigation operations (add, delete, edit,) using ODBC/JDBC.

Input: Student library books information

Theory: Introduction to JDBC:

JDBC is used for accessing databases from Java applications Information is transferred from relations to objects

and vice-versa

◦ databases optimized for searching/indexing

◦ objects optimized for engineering/flexibility

JDBC architecture:

Java code calls JDBC library JDBC loads a driver Driver talks to a particular database An application

can work with several databases by using all corresponding drivers Ideal: can change database engines

without changing any application code (not always in practice)

MYSQL/Oracle database connectivity with PHP/python/Java Implement Database

navigation operations.

Expt. No: 10

SQL> INSERT INTO table_name VALUES (column16, 9column2, ...);

Common JDBC components:

Driver Manager: This class manages a list of database drivers. Matches connection requests from the

java application with the proper database driver using communication subprotocol. The first driver that

recognizes a certain subprotocol under JDBC will be used to establish a database Connection.

Driver: This interface handles the communications with the database server. You will interact directly

with Driver objects very rarely. Instead, you use DriverManager objects, which manages objects of this

type. It also abstracts the details associated with working with Driver objects

Connection : This interface with all methods for contacting a database. The connection object

represents communication context, i.e., all communication with database is through connection object

only.

Statement : You use objects created from this interface to submit the SQL statements to the database.

Some derived interfaces accept parameters in addition to executing stored procedures.

ResultSet: These objects hold data retrieved from a database after you execute an SQL query using

Statement objects. It acts as an iterator to allow you to move through its data.

SQLException: This class handles any errors that occur in a database application.

JDBC SQL Syntax:

Structured Query Language (SQL) is a standardized language that allows you to perform operations on a

database, such as creating entries, reading content, updating content, and deleting entries. This tutorial

gives an overview of SQL, which is a pre-requisite to understand JDBC concepts. This tutorial gives you

enough SQL to be able to Create, Read, Update, and Delete (often referred to as CRUD operations) data

from a database.

Create database:

SQL> CREATE DATABASE DATABASE_NAME;

Example: The following SQL statement creates a Database named EMP: SQL> CREATE DATABASE

EMP;

Drop database:

SQL> DROP DATABASE DATABASE_NAME;

Create table:

SQL> CREATE TABLE table_name (column_name column_data_type, column_name

column_data_type, column_name column_data_type ...);

Insert data:

70

Select data:

SQL> SELECT column_name, column_name, ... FROM table_name WHERE conditions;

Update data:

SQL> UPDATE table_name SET column_name = value, column_name = value, ... WHERE conditions;

Delete data:

SQL> DELETE FROM table_name WHERE conditions;

Step for creating JDBC application:

There are following steps involved in building a JDBC application:

1. Import the packages. Requires that you include the packages containing the JDBC classes needed for

database programming. Most often, using import java.sql.* ; will suffice.

2. Register the JDBC driver. Requires that you initialize a driver so you can open a communications

channel with the database.

3. Open a connection . Requires using the DriverManager. getConnection() method to create a

Connection object, which represents a physical connection with the database.

JDBC Driver is a software component that enables java application to interact with the database. There

are 4 types of JDBC drivers: 1. JDBC-ODBC bridge driver

2. Native-API driver (partially java driver)

3. Network Protocol driver (fully java driver)

4. Thin driver (fully java driver)

Six steps:

1. Load the driver

2. Define the connection URL

3. Establish the connection

4. Create a Statement object

5. Execute a query using the Statement, Process the result

6. Close the connection

Conclusion: Thus through JDBC connection the operations are performed.

	DR. D. Y. PATIL INSTITUTE OF ENGINEERING, MANAGEMENT & RESEARCH, AKURDI
	NAAC 1.4.1 Curriculum Feedback Report
	Dr. D. Y. Patil Pratishthan’s
	AI&DS and COMPUTER ENGINEERING DEPARTMENT
	Sr. No Content Page No.
	1. Notice
	EXPERT LECTURE
	Microsoft Teams Link:

	2. Objectives
	3. Information about Speaker
	4. Report
	Highlights of the Talk:
	Details of the session:

	5. Glimpses of the session
	Learning Outcomes
	Attendance Record
	Letter of Conduction
	Report Prepared by
	Mrs. Sandhya Gundre Mrs. Suvarna Patil
	Asst. Prof, DYPIEMR
	Training Coordinator Head of Department
	Training Coordinator Head of Department (1)

	Class – TE
	Vision:
	Mission:
	Guidelines for Student's Lab Journal
	Guidelines for Lab Assessment:

	INDEX
	Learning Resources:
	1. Study of Open Source Relational Databases : MySQL
	AIM:
	OBJECTIVES:
	Theory:

	INTRODUCTION TO SQL:
	MYSQL Installation Process: Installation Process –
	Data Definition in SQL CREATE, ALTER and DROP
	DATA TYPES
	Components of SQL:
	Examples:
	2) DML(Data Manipulation Language)
	3) DCL(Data Control Language)
	Examples: (1)
	 The commands used in MySQL are:
	i) FOR CREATING A DATABASE :
	Example:
	ii) FOR CREATINGA TABLE:
	Syntax:
	Example: (1)
	Syntax: (1)
	Syntax: (2)
	Syntax: (3)
	Syntax: (4)
	Syntax: (5)
	Syntax: (6)
	Example: (2)
	Syntax: (7)
	Conclusion:

	Problem Statement:
	Theory:
	DDL
	DML
	DCL
	TCL
	SQL Statements For Tables
	NOT NULL Constraint
	UNIQUE constraint
	Primary Key
	Foreign Key
	Creating Sequence
	CREATE SYNONYM:
	SQL CREATE VIEW Statement

	Create table branch(branch_name,branch_city,assets) :
	Create table borrower(cust_name,loan_no) :
	AIM:
	OBJECTIVES:

	Problem Statement: (1)
	Theory:
	Solve following queries:
	Create table branch(branch_name,branch_city,assets) : (1)
	Create table borrower(cust_name,loan_no) : (1)
	Q3. Find all customers who have a loan from bank. Find their names, loan_no and loan amount.
	Q4. List all customers in alphabetical order who have loan from Akurdi branch.
	Q6. Find all customers who have both account and loan at bank.
	Q7. Find all customer who have account but no loan at the bank.
	Q8. Find average account balance at Akurdi branch.
	Q9. Find the average account balance at each branch
	10. Find no. of depositors at each branch.
	Q11. Find the branches where average account balance > 12000.
	Q12. Find number of tuples in customer relation.
	Q14. Delete all loans with loan amount between 1300 and 1500.
	Q15. Delete all tuples at every branch located in Nigdi.
	Q.16. Create synonym for customer table as cust.
	Q.17. Create sequence roll_seq and use in student table for roll_no column.
	Conclusion:

	Expt. No: 5
	Retrieve the address of customer Fname as 'xyz' and Lname as 'pqr'
	List the customer holding fixed deposit of amount more than 5000
	List the employee details along with branch names to which they belong
	List the employee details along with contact details using left outer join & right join
	List the customer who do not have bank branches in their vicinity.
	Solutions:
	Retrieve the address of customer Fname as 'Rutuja' and Lname as 'Deshmane'
	List the customer holding fixed deposit of amount more than 5000
	List the employee details along with branch names to which they belong
	List the employee details along with contact details using left outer join & right join
	List the customer who do not have bank branches in their vicinity.

	Expt. No: 6
	IF STATEMENT
	Solution in Mysql:
	mysql> create table borrower(rollin int primary key,name varchar(20),dateofissue date,nameofbook varchar(20),status varchar(20));
	Problem Statement: Consider table Stud(Roll, Att,Status)
	Solution in Oracle:
	Conclusion:
	Theory:
	Implicit Cursors
	Explicit Cursors
	CURSOR cursor_name IS select_statement;
	Declaring the Cursor
	Opening the Cursor
	Fetching the Cursor
	Closing the Cursor

	Problem Statement :
	Cursors: (All types: Implicit, Explicit, Cursor FOR Loop, Parameterized Cursor)
	Conclusion:
	Theory:
	Creating a Function:
	Calling a Function

	Solution in MySQL:
	Solution :
	/
	if diffdate<15 then return 0;
	return (50*(diffdate-30)+5*(15)); end if;
	create table borrower(rollno number primary key, name varchar2(20), dateofissue date, nameofbook varchar2(20), status varchar2(20));
	insert into borrower values(1,'abc',date '2021-06-01','SEPM','I'); insert into borrower values(2,'xyz',date '2021-05-01','OOP','I'); insert into borrower values(3,'pqr',date '2021-06-15','DBMS','I'); insert into borrower values(4,'def',date '2021-06-3...
	tdays number(5); tdate date;
	troll_no := roll;
	select ((select to_date(sysdate,'DD-MM-YY')"Now" from dual)-dateofissue) into diffdate from Borrower where rollno=troll_no;
	Conclusion:
	Theory:
	Benefits of Triggers
	Creating Triggers

	Problem Statement: (2)
	Database Trigger (All Types: Row level and Statement level triggers, Before and After Triggers).
	Solution in MySQL:

	Solution in Oracle:
	Statement Trigger:
	JDBC SQL Syntax:
	Create database:
	Drop database:
	Create table:
	Insert data:
	Update data:
	Delete data:
	Step for creating JDBC application:
	Six steps:
	Conclusion: Thus through JDBC connection the operations are performed.

