$\square$

Time : 1 Hour $]$
2) Figures to the right indicate full marks.
3) Neat diagrams must be drawn wherever necessary.
4) Assume suitableadditional data, if necessary.
5) Use of non-programmable calculator is allowed.

Q1) a) Distinguish between a microcontroller and a miçroprocessor considering memory, speed of operations and flexibility of usage.
b) Write any six features on A Tmega 328Pmicrocontroller.
c) Explain the following functions usedto handle GPIO in ATmega 328P based Arduino board with help of syntax:
i) pinMode()
ii) digitalRead()
iii) digitalWrite ()

OR
Q2) a) What is an embedded system? Give any two examples of enbedded systems.
b) Write any six features of Arduino IDE and explainsfructure@f a program in Arduino.
c) Explain the following Arduino functions with the help of appropriate syntax:
i) analogRead()
ii) analogReference()
iii) analogWrite()

Q3) a) Write any three features of ADC in ATmega 328P.
b) Draw interfacing diagram of an EED with Arduino board. Also write algorithm and the program to blink the LED for every 1 second interval.[6]
c) Explain the following functions used for serial communication in Arduino.
i) serial.begin( )
ii) serial.print ()
iii) serial.printlin()

OR
Q4) a) Draw interfacing diagram of LCD with ATmega 328P.
b) What is LM35? Draw interfacing diagram of LM35 with ATmega 328P. Write algorithm to display temperature on LCD,
c) Explain construction and working of LVDT. Draw interfacing diagram of LVDT with ATmega328P.
$\square$

# S.E. (Automobile \&Robotics/Automoble \& Mechanical/ Mechanical//Mechanical Sandwich) ENGINEERING MÁTERIALS AND METALLURGY (2019 Pattern) (Semester - I) (202044) 

## Time : 1 Hour]

[Max. Marks : 30
Instructions to the candidates:

1) Solve Q. 1 or 2.2, Q. 3 or Q.4.
2) Figuves to the right indicate full marks.
3) Use of électronic pocket calculator is allowed.
4) Assume suitable data if necessary.

Q1) a) What is atomic packing factor of unit cell? Calculate atomic packing factor for BCC crystal structure with neat skeetch.
b) Differentiate between slip and twiming.
c) Write a short note on Baushinger effect.

Q2) a) Define the term "Miller Indices". Sketch within a cubic unit cell the following planes :
i)
ii) (011)
b) State the various point defects in a crystal? Explain any two point defects with the help of diagram.
c) Differentiate between ductile fracture and brittle fracture.

Q3) a) Write short note on Poldi hardness test.
b) With a neat diagram explain the principle of Scanning Tilectron Microscope (SEM). Also state the application of it.
c) Differentiate between microscopic and macroscópic examination.

OR

Q4) a) Differentiate between Charpy and Izod impact test.
b) Explain the principle of Eddy current test with a neat sketch and state the application of $i t$.
c) Write short note on Spark tåㅎ.
$\square$
[Total No. of Pages : 4

1) Question/No. 1 is compulsory. Solve Q. 2 or Q.3, Q. 4 or Q.5, Q. 6 or Q.7, Q. 8 or Q.9.
2) Neat diagrams must be drawn whenever necessary.
3) Figures to the right indicate full marks.
4) Use of electronic pocket calculator is allowed.
5) Assumésuitable data, if necessary.

Q1) a) The first four moments of a distribution aboutmean of the variable are 0 , 2,0 and 11. Then $\beta_{2}=$
i) 2.5
ii) $\quad 2.3999$
iii) 2.75
iv) 0.5987
b) If $\overline{\mathrm{F}}=\left(x^{2} y\right) \hat{i}+(x y z) \hat{j}+\left(z^{2} y\right) \hat{k}$ then curl $\overline{\mathrm{F}}$ at $(1,1,2)$ is
i) $5 \hat{i}+\hat{j}$
ii) $3 \hat{i}+\hat{j}+\hat{k}$
iii) $3 \hat{i}+\hat{k}$
iv) $3 \hat{i}+\hat{j}$
c) The most general solution of the partial differential equation $\frac{\partial u}{\partial t}=c^{2} \cdot \frac{\partial^{2} u}{\partial x^{2}}$ representing heat flowalong a bar is
i) $\quad\left(c_{1} \cos m x+c_{2} \sin m x\right) e^{-c^{2} m^{2} t}$
ii) $\left(c_{1} \cos m x+c_{2} \sin m x\right) e^{-m^{2} t}$
iii) $\left(c_{1} \cos m x+c_{2} \sin m x\right)\left(c_{3} \cos c m t+c_{4} \sin c m t\right)$
iv) $\left(c_{1} \cos m x+c_{2} \sin m x\right)\left(c_{3} e^{m y}+c_{4} e^{-m y}\right)$
d) In Binomial probability distribution, if $p=q$, then $\times \mathrm{P}(\overline{\mathrm{X}}=r)$ is
i) ${ }^{n} c_{r}\left(\frac{1}{2}\right)^{n-r}$
ii) ${ }_{n} c_{d}\left(\frac{8}{2}\right)^{n}$
iii) ${ }^{n} c_{r}\left(\frac{1}{2}\right)^{n}$
iv) $\operatorname{con}^{n} c_{n}\left(\frac{1}{2}\right)^{n}$
e) If $\bar{r}=x \hat{i}+y \hat{j}+z \hat{k}$ then $\nabla \cdot \bar{r}=$
[1]
i) 1
ii) 2
iii) 3
iv) 4
f) In a poisson distribution if $\mathrm{P}(r=3)=6 \mathrm{P}(r=4)$, then $\mathrm{P}(r=2)$ is equal to
[1]
i) 0.025
ii) 0.01148
iii) 0.251
iv) 0.1148

Q2) a) Fit a straight line of the Form $y=a x+b$ to the following data.

| $x$ | 1 | 3 | 4 | 5 | 6 | 8 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | -3 | 1 | 3 | 5 | 7 | 11 |

b) Calculatethe first four moments about the mean of the following distribution.

| $x$ | 2 | 2 | 3 | 4 | 5 | 6 | 7 | -8 | 9 | 10 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $F$ | 6 | 15 | 23 | 42 | 62 | 60 | 40 | 24 | 13 | 5 |

c) Find the coefficient of correlation for the foHowing table.
[5]

| $x$ | 10 | 14 | 18 | 22 | 26 | 30 |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| $y$ | 18 | 12 | 24 | 6 | 30 | 36 |

Q3) a) Fit a straight line to the following data.
[5]

| $x$ | 0 | 5 | 10 | 15 | 20 | 25 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | 12 | 15 | 17 | 22 | 24 | 30 |

b) First four moments of a distribution about value 4 are $-1.5,17,-30$ and 108. Find the first four moments about mean $\beta_{1} \& \beta_{2}$.
c) Obtain the regression lines for the following table.

| $x$ | 6 | 2 | $\frac{1}{6} 0$ | 4 | 8 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $y$ | 9 | 11 | 5 | 8 | 7 |

Q4) a) From 20 tickets marked 1 to 20, one ticket is drawnat random. Find the probability that it is marked with multiple of 3 or 5. .
b) A fair coin is tossed 6 times. Find a probability of getting:
i) at least four heads
ii) not heads
c) Assuming that the distance of 1000 brass plugs take consecutively from machine from a normal distribution with mean 0.7515 cm and standard deviation 0.0020 cm . How many of the plugs are likely to be approved if the acceptable diameter is $0.752 \pm 0.004 \mathrm{~cm}$. (Given Area $=0.478$ for $z=2.25$ and Area 0.4599 for $z=1.75$ ).

Q5) a) A can hit the target 1 out of 4 times. B can hit 2 out of 3 times. C can hit the target 3 out of 4 times. Find the probability that at least 2 hit the target.
[5]
b) In a certain factory turning oyt razor blades there is a small chance of $\frac{1}{500}$ for any blade to be defective. The blades are supplied in a pack of 10. Use Poisson distribution to calculate the approximate number of packets containing no defective and two defective blades, in a consignment of 10,000 packets.
c) Among 64 off spring of a certain cross between European horses, 34 were red, 10 were black and 20 were white. According to a genetic model, these numbers should be in the ratio $9: 3: 4$. Is the data consistant witn the model at $5 \%$ level of significance $\left(\chi_{v-1,0.05}^{2}=5.99\right)$.

Q6) a) Find the directional derivative of $\phi=x^{2}-y^{2}-2 x^{2}$ at the point $\mathrm{P}(2,-1,3)$, in the direction PQ where Q is $(5,6,4)$.
[5]
b) Show that the vector field $\overline{\mathrm{F}}=\left(8 x y+z^{4} \overline{\bar{i}}+\left(4 x^{2}-z\right) \bar{j}+\left(4 x z^{3}-y\right) \bar{k}\right.$ is irrotational. Find Scalar potential function $\phi$ such that $\overline{\mathrm{F}}=\nabla \phi$.
c) Using Green's theorem for $\overrightarrow{\mathrm{F}}=x y \overline{l^{\prime}}+y^{2} \bar{j}$ over region R enclosed by parabola $y=x^{2}$ and line $y * x$ in the first quadrant, evaluate $\int_{c} x y d x+y^{2} d y$.
[5]
OR
Q7) a) Using Stoke's theoremevaluate $\iint_{s} \nabla \times \overline{\mathrm{F}} \cdot \hat{\mathrm{N}} d s$ where $\overline{\mathrm{F}}=3 y \bar{i}-x z^{2} \bar{j}^{2}+y z^{2} \bar{k}$ and $s$ is surface of the paraboloid $2 z=x^{2}+y^{2}$ botnded by $z=2$.
b) Prove that (any one):
i) $\bar{b} \times(\nabla(\bar{a} \cdot \nabla \log r))=\frac{\bar{b} \times \bar{a}}{r^{2}}-\frac{2(\bar{a} \cdot \bar{r})}{r^{4}}(\bar{b} \times \bar{r})$
ii) $\quad \nabla^{4}\left(r^{2} \log r\right)=\frac{6}{r^{2}}$
c) Find angle between the tangents to the curve $\bar{r}=t^{2} \bar{i}+2 \bar{j}-t^{3} \bar{k}$ at the points $t=1$ and $t=-1$.

Q8) a) A homogeneous rod of conducting material of length 100 cm has its ends kept at zero temperature and the temperature initially is

$$
\begin{aligned}
u(x, 0) & =x, & & 0 \leq x \leq 50 \\
& =100-x, & & 50 \leq x \leq 100
\end{aligned}
$$

Find the temperature $u(x, y)$ at any time.
b) Solve following $\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}$ subject to
[7]
i) $y(0, t)=0, \forall t$
ii) $u(l, t)=0, \forall t$
iii) $\left(\frac{\partial y}{\partial t}\right)_{t=0}=0$
iv) $y(x, 0)=\frac{3 a}{2 l} x, \quad 0 \leq x \leq \frac{2 l}{3}$

$$
=\frac{3 a}{l}(l-x), \frac{2 l}{3} \leq x \leq l
$$

Q9) a) Solve the equation $\frac{\partial^{2} u}{\partial \bar{x}^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ subject to
i) $u=0$ when $y \rightarrow \infty$ for all $x$
ii) $\quad u=0$ when $x=0$ for all $y$
iii) $u=0$ when $x=$ for all $y$
iv) $u=x(1-x)$ when $y=0$ for $0<x<1$.
b) The initial temperature along the length of an infinite bar is given by $u(x, 0)=2, \quad|x|<1$
$=0,|x|>1$. If the temperature $u(x, t)$ satisfies the equation $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}},-\infty<x<\infty, t>0$, find the temperature at any point of the bar at time $t$.

## $\rightarrow \rightarrow+i$

[5925]-311
$\square$

# S.E. (Automobile \& Mechanical/Mechanical(Sandwich)) ENGINEERING THERMODYNAMICS <br>  

Time : 1 Hour]

## Instructions to the candidates:

1) Answer Q1 or Q2, Q3 or Q4.
2) Neat diagrams must be drawn wherever necessary.
3) Figures to the right side indicate full marks.
4) use of electronic pocket calculator is allowed.
5) Assume suitable data; if necessary.

Q1) a) Distinguish between:
i) Intensive and Extensive properties.
ii) Process and cycles
iii) Open system and closed system
b) A closed vessel contains 2 kg of carbon dioxide at temperature $20^{\circ} \mathrm{C}$ and pressure 0.7 bar. Heat is supplied to the vessel till the gas acquires a pressure of 1.4 bar.
Calculate:
i) Final temperature
ii) Work done on or by the gas
iii) heat added
iv) Change in internal energy. Take specific heat of gas at constant volume as $0.657 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$.

## OR

Q2) a) Prove that the ratio of specific heats at constant pressure to constant volume is equal to adiabatic index $\gamma$.
b) With sketch write down the application of Steady Flow energy equation to :
i) Nozzle
ii) Bóiler
iii) Turbine
ivo Pump

Q3) a) A domestic food freezer maintains a temperature of $-15^{\circ} \mathrm{C}$. The ambient temperature is $30^{\circ} \mathrm{C}$. If heat leaksinto the freezer at continuous rate of $1.75 \mathrm{~kJ} / \mathrm{s}$. What is the least pever necessary to pump this heat out continuously.
b) Define specific heats at conșiant volume and at constant pressure.
c) Draw P-V and T-S diagrams of :
i) Constant rolume
ii) Isothernal
iii) Adtabatic
iv) Constant Pressure

OR
Q4) a) State the limitation of first law of thermodynamics.
b) Explain the concept of reversibility and irreveessibility.
c) Explain with neat diagram Carnot cycle write the efficiency of Carnot cycle.
$\square$

# S.E. (Automobile \& Mechanical Engg.) 

 FLUID MECHANICS(2019 Pattern) (Semester - IV) (202049)

## Time : $\mathbf{2 ¹}_{2}$ Hours]

[Max. Marks : 70

## Instructions to the candidates:

1) Answer Q1 gr Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8.
2) Neat diagrams must be drawn wherever necessary.
3) Figures to the right indicate full marks.
4) Assumie suitable data, if necessary.
5) Use of electronic pocket calculator is allowed.

Q1) a) Define following terms :
i) Path line oiii) Stream line
iii) Streak line $\times$ iv) Stream tube
b) Distinguish between
i) Uniform \& Non uniform flow
ii) Steady \& Unsteady flow
iii) Rotational \& Irretational flow
c) The velocity potential function is given by $\phi=\left(x^{2}-y^{2}\right)$ find the velocity vector for the given fluid flow. Also show that \$ represents possible case of flow.

OR
Q2) a) Explain following properties with their mathematical properties :
i) Velocity potential
ii) Stream function
b) Derive continuity equation for 1D flow afong streamline.
c) The velocity vector in the fluid flow is given by $\mathrm{V}=2 x^{3} \hat{i}-5 x^{2} y \hat{j}+2 t \hat{k}$. Obtain velocity \& acceleration at point $(2,1,0)$ at time $t=1 \mathrm{~s}$.

Q3) a) Differentiate between venturimeter $\&$ orificemeter.
b) State \& Derive Bernoulli's equation along streamline.
c) An oil of specific gravity $0.9 \&$ viscosity 10 poise is flowing through a pipe of diameter 110 mm . The velocity at the center of pipe is $2 \mathrm{~m} / \mathrm{s}$ find :
i) The pressure gradient in the direction of flow.
ii) Shear stress at the pipe wall
iii) Velocity'at adistance 30 mm from pipe wall

OR
Q4) a) Show that the value of coefficient of friction for viscous flow through the circulappipe is given by $f=16 / \mathrm{Re}$.
b) Derive anexpression of velocity \& shear stress distribution for laminar flow through pipe.
c) A conical tube of length 3 m is fixed vertically with its smaller end upwards. The velocity of flow at smaller end is $4 \mathrm{~m} / \mathrm{s}$; while at its lower end is $2 \mathrm{~m} / \mathrm{s}$. The pressure head at the smaller end is 2 m of liquid. The loss of head through the pipe is $0.95\left(\nabla_{1}-\mathrm{v}_{2}\right)^{2} / 2 \mathrm{~g}$ where $\mathrm{v}_{1}$ velocity at smaller end \& $\mathrm{v}_{2}$ velocity at lower end, Determine the pressure head at the lower end. Flow takes place in downward direction.

Q5) a) Explain the following term with their graphical representation :
i) Hydraulic Grade line of
ii) Total Energy line
b) What is siphon? Explain its working along with the diagram? $\mathcal{B}^{\circ}$ [6]
c) Find the displacement thickness, the momentum thickness for the velocity distribution in the boundary layer is given by $\frac{u}{v}=2(y / \delta) \cdot(y / \delta)^{2}$.

OR
Q6) a) Define the following term with brief explanations:
i) Boundary layer
ii) Boundary layer thickness
iii) Drag
iv) Lift
b) What do you mean by Boundary layer separation? Write the methods of preventing the separation of boundary layer.
c) A pipe of diameter of 0.4 m and length 2000 m is connected to a reservoir at one end. The other end of the pipe is connected to a junction from which two pipes of lengths 1000 m and diameter 3000 m are parallel. These parallel pipes are connected to another reservoir, which is having level of water 10 m below the water level of the above reservoir. Determine the total discharge if $f=0.015$. Neglect minor losses.

Q7) a) State andexplain Buckingham's $\pi$-theorem. What do you mean by repeating variables? How are repeating variables selected in Dimensional Apalysis?
b) The Frietional Torque of disc of diameter D rotating at a speed N in a fluid $\rho^{\rho}$ viscosity $\mu$ and density $\rho$ in a turbulent flow is given by $T \Rightarrow D^{5} N^{2} \rho \phi\left[\frac{\mu}{D^{2} N \rho}\right]$.

Q8) a) Explain the following Dimensionless number along with mathematical expressions:
i) Reynolds Number
ii) Froude's Number
iii) Euler's Number
iv) Weber Number
b) A Fluid of density $R_{1}$ and viscosity $\mu$, flows at a velocity $v$ through a circular pipe of diameter D. By using Buckingham's $\pi$-theorem. Prove that shear stress $\tau_{0}$ at wall is given by $\tau_{0}=\rho v^{2} \phi\left[\frac{\rho v}{\mu}\right]$.

## H\&ٌ

Total No. of Questions: 8] $\square$
[Total No. of Pages : 4

# S.E. (Automobile \& Nrechanical/Mechanical/ <br> Mechanical Sandwich/Automation \& Robotics) KINEMATICS OF MACHINERY (2019 Pattem) (Semester - IV) (202047) 

Time : $2^{1 ⁄ 2} 2$ Hours]
[Max. Marks: 70
Instructions to the candidates.

1) Answê Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8.
2) Neat diagrams pnust be drawn wherever necessary.
3) Figures to the right side indicate full marks.
4) Use of calculator is allowed.
5) Assunce suitable data if necessary.

Q1) a) Explain with neat sketch Kennedy's theorem
b) In the mechanism shown in Fig. determine the acceleration fo the slider C . $\mathrm{O}_{1} \mathrm{~A}=100 \mathrm{~mm}, \mathrm{AB}=120 \mathrm{~mm}, \mathrm{O} 2 \mathrm{~B}=150 \mathrm{~mm}$, and $\mathrm{BC}=350 \mathrm{~mm}$. The crank $\mathrm{O}_{1} \mathrm{~A}$ rotates at 240 rpm .

OR
Q2) a) Explain coriolis acceleration with neat sketch.
[5]
b) Fig shows a six link mechanism. The dimensions of links are $\mathrm{OA}=100 \mathrm{~mm}, \mathrm{AB}=580 \mathrm{~mm}, \mathrm{BC}=300 \mathrm{~mm}, \mathrm{QC}=100 \mathrm{~mm}$ and $\mathrm{CD}=350 \mathrm{~mm}$. The crank OA rotates at 150rpm. For the position when crank OA makes an angle of $30^{\circ}$ with the hórizontal determine by using ICR method, Total no. of links are 6 .
i) Linear velocity of points $B, C$ and $D$.
ii) Angular velocity of links $A B, B C$ and $C D$.


Q3) a) Explain the following terms :
i) Type synthesis
ii) Number synthesis
iii) Dimensional synthesis
b) Determine the Chebyshev spacing for the function $y=x^{1.5}$ for the range $1 \leq \times \leq 3$ where three precision points are required. For these points, determine $\theta_{2}, \theta_{3} \& \phi_{2}, \phi_{3}$ if $\Delta \theta=400 \& \Delta \phi=900$.

Q4) a) Explain the following terms :
i) Function generation
ii) Path generation
iii) Motion generation
b) Design a four bar mechanism with input link $l_{2}$, coupler ink $l_{3} \&$ output $\operatorname{link} l_{4}$, Angles $\theta \& \varphi$ for 3 successive positions are given below: [11]

| Position | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: |
| $\theta$ | $40^{\circ}$ | $55^{\circ}$ | $70^{\circ}$ |
| $\varphi$ | $50^{\circ}$ | $60^{\circ}$ | $75^{\circ}$ |

If grounded link $1=30 \mathrm{~mm}$ using Freudenstein's equation, find out lenghts of other links to satify given positional conditions. Also draw synthesize mechanism in its first position \& comment on the mechanism obtained.

Q5) a) What do you mean by interference and undercut?
Define:
i) Helix angle
ii) Transverse circular pitch
iii) Transverse module
b) A pair of spur gears withinvolute teeth is to a gear ratio of 4:1. The arc of approach is not to be less than the circular pitch and smaller wheel is the driver. The angle of pressure is $14.5^{\circ}$.
Find: i) the least number of teeth that can be used on each wheel and
ii) the addendum of the wheel in terms of the circular pitch?

Q6) a) What do yoúunderstand by 'gear train'? Discuss the various types of gear trains.
b) An epicyclic gear consists of three gears A, B and Cy as shown in Fig. The gear A has 72 internal teeth and gear C has 32 external teeth. The gear B meshes with both A and C and is carried on an arm EF which rotates about the centre of $A$ at 18 r.p.m. If the gear $A$ is fixed, determine the speed of gears $B$ anc $C$.


Q7) a) What are the varioustypes of automation? Explain them.
b) A cam is to be designed for a knife edge follower with the following data :
i) Cam lift $=40 \mathrm{~mm}$ during $90^{\circ}$ of cam rotation with simple harmonic motion.
ii) Dwell for the next $30^{\circ}$.
iii) During the next $60^{\circ}$ of cam rotation, the followerreturns to its original position with simple harmonic motion
iv) Dwell during the remining $180^{\circ}$.

The radius of the base circle of the carmis 40 mm .
Draw the profile of the cam when the line of stroke of the follower passes through the axis of the cam shaft.

OR

Q8) a) What are the benefits of automated production lines?
b) A cam, with a minimum radius of 25 mm , rotating clockwise at a uniform speed is to be designed to give a roller follower, at the end of a valve rod, motion as described below.
i) To raise the valve through 50 mm during $120^{\circ}$ rotation of the cam;
ii) To keepthe valvefully raised through next $30^{\circ}$;
iii) To dower the valve during next $60^{\circ}$; and
iv) Tokeep the valve closed during rest of the revolution i.e. $150^{\circ}$;

The diameter of the roller is 20 mm and the diameter of the cam shaft is 25 mm . Draw the profile of the cam when the line oftroke of the valve rod passies through the axis of the cam shaft.
$\square$

# S.E. (Automation\&Robotics/Mechanical/Automobil \& Mechanical) MANUFACTURING PROCESSES (2019 Pattern) (Semester - IV) (202050) 

Time : $2^{1 ⁄ 2}$ Hours]
Instructions to the candidates:

1) All questions are compulsory i.e. solve Q. 1 or Q.2, Q. 3 or Q.4, Q. 5 or Q.6, Q. 7 or Q.8.
2) Neat diagrams must be drawn wherever necessary.
3) Figures to the rightindicate full marks.

Q1) a) Explain with neat sketch any two sheet metal operations.
b) What is centre of pressure? Write a detailed procedure for centre of pressure. Also Find centre of pressure of component shown in fig. 1 is to be made from mild steel sheet of 1.7 mm thick.

OR
Q2) a) Explain compound and progressive sheet metal dies.
b) A part shown in fig. 2 is to be made from sheet of 3 mom thick and ultimate shear strength of material is $30 \mathrm{~N} / \mathrm{mm}^{2}$.

Determine:
i) Stock Strip layout
ii) $\%$ utilization of stripi
iii) Clearance between punch and die,
iv) Blanking force,
v) Sectional view of press.


Q3) a) What is coating on an arc welding electrode, with advantages.
b) Explainprinciple of TIG welding with advantages
c) Explalin in detail type of joints used in welding.

Q4) a) Compare between Spot and Seam weldprocess.
b) Compare between Soldering and brazing process.
c) Explain any five defects in welding process.

Q5) a) Defferentiate between thermoplastics and Thermosetting plastics.
b) Explain with figure injection molding process.
c) Explain in detail extrusion of pipe and extrusion of sheets.

## OR

Q6) a) Explain with figure blow molding process
b) Explain in detail vacuum forming process.
c) Write short notes on pressure forming process.

Q7) a) Explain with figure Spray lay-up process.
b) Explain with figure vacuum impregnation process.
c) Write short notes on nano-composites.

Q8) a) Explain with figure Hand lay-up Process.
b) Explain with figure Fabrication of ceramic matrix composites.
c) Write short notes on Filament winding process:
$\square$

# S.E. (Automobile \& Mechanical Engineering/Mechanical Sandwitch/Automation \& Robotics) SOLDMMECHANICS (2019 Pattern) (Semester - I) (202041) 

Time : 1 Hour]
[Max. Marks : 30 Instructions to the candidates

1) Answer Q. 1 or Q.2, Q. 3 or Q.4.
2) Figures to the right side indicate full marks.
3) Use of electronic pocket calculator is allowed.
4) Assume Suitable data if necessary.

Q1) a) A 2.0 mong steel bar is having uniform diameter 0 40 mm for a length of 1 n' from one end. For the next 0.5 m length the diameter decreases uniformly to ' $d$ '. For the remaining 0.5 m lengthit has a uniform diameter of d mm. When a load of 150 kN is applied the observed extension is 2.40 mm . Determine the diameter व. Take modulus of elasticity for steel equal to $200 \mathrm{kN} / \mathrm{mm}^{2}$.
b) The composite bar consisting of steel and aluminium components as shown in Fig 1.1 is connected to two grips at the ends at a temperature of $60^{\circ} \mathrm{C}$. Find the stresses in the two rods when the temperature falls to $20^{\circ} \mathrm{C}$.
i) if the ends do not yield?
ii) if the ends yield by 0.25 mm .

Take $\mathrm{E}_{s}=2 \times 10^{5}$ and $\mathrm{E}_{a}=0.7 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}, \alpha_{s}=1.17 \times 10-$ and $\alpha_{\mathrm{a}}=2.34 \times 10^{-5} \operatorname{per}^{\circ} \mathrm{C}$. The areas of steel and aluminium bars are 250 $\mathrm{mm}^{2}$ and $375 \mathrm{~mm}^{2}$ respectively.


Fig 1.1

OR

Q2) a) A steel block $360 \mathrm{~mm} \times 80 \mathrm{~mm} \times 160 \mathrm{~mm}$ is subjected to the following forces.
i) A tensile force of 1280 KN on the $160 \mathrm{~mm} \times 80 \mathrm{~mm}$ faces (take as a X - direction)
ii) A tensile force 3456 KN the $360 \mathrm{~mm} \times 80 \mathrm{~mm}$ faces (take as a Y direction) and.
iii) A compressiye force of 5184 KN on the $160 \mathrm{~mm} \times 360 \mathrm{~mm}$ faces (take asaZ-direction).
Find the changes in the dimensions of the block and also the change in volume. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $1 / \mathrm{m}=0.25$.
b) A rigid rod ABCD is supported by a hinge at A and two wires at B and C as shown in figure 2.1. Determine the stresses and elongation of the two wires. Take $\mathrm{E}_{\mathrm{s}}=200 \mathrm{GPa}$ and $\mathrm{E}_{\mathrm{c}}=100 \mathrm{GPa}$.


Q3) a) Draw SFD and BMD of the beam shown in figure 3.1
[7]

b) Draw SFD \& BMD of the beam shown in figure 3.2, also locate the point of contraflexure from left end.


Fig 3.2
OR

Q4) a) Draw SFD \& BMD of the beam shown in figure 4.1.

b) Draw SFD \& BMD, of the beam shown in figure 4.2, also find the POC from leftend.


Fig 4.2
$\square$

# S.E. (Automobile \& Mechainical Engg./Mechanical S/W/ Automation \& Robotics) SOL\&MODELING \& DRAFTING (2019 Patterin) (Semester - I) (202042) 

Time : 1 Hour]
[Max. Marks : 30
Instructions to the candidates:

1) Attermp Question 1 or 2 and Question 3 or 4.
2) Figures to the right indicate full marks.
3) Draw the neat sketch wherever necessary.

Q1) a) What is computer-aided design? Explain the phases involved in it. [6]
b) Explain the difference between Wireframe. Surface \& Solid Modeling with suitable examples and sketches.

Q2) a) Explain the feature-based geometric modeling approach with suitable examples.
b) Explain the concept ofVRML web-based viewing with a suitable example.[7]

Q3) a) Explain $\mathrm{C}^{0}, \mathrm{C}^{1}$, and $\mathrm{C}^{2}$ coontinuities with a neat sketch.
b) Write the parametriciequation of line with endpoints $\mathrm{A}(1,1,1)$ and $\mathrm{B}(6,8,10)$. Find the coordinate of points at $u=0.25,0.50,0.75$. [9]

## OR

Q4) a) Distinguish between analytical and synthetic curves?
b) Write Parametric Equation of Circle with center $\mathrm{C}(4,4)$ and Radius 5 units. Find coordinates of points on circle at $30^{\circ}, 45^{\circ}$ and $60^{\circ}$.
$\square$

Time : $2 ½$ Hours]
[Max. Marks: 70
Instructions to the candidates 0

1) Answer Q. 1 or Q. 2, Q. 3 or Q. 4, Q. 5 or Q. 6, Q. 7 or Q. 8.
2) Figures to the right indicate full marks.
3) Neat diagrams must be drawn whenever necessary.
4) Makesuitable 'assumption whenever necessary.
5) Scientific calculator is allowed.

Q1) a) Draw neat sketch and explain any three types of fuel injector nozzles used in CI engine.
b) Draw neat sketches of any three types combustion chambers used in SI engines.

Q2) a) What is ignition delay in Crengines? Explain any three factors affecting the ignition delay.
b) Explain with sketch the phenomenon of detonation in SI engine. State any two factors affecting fame speed.

Q3) a) Explain Heat balance sheet with its different component.
b) A single cylinder 4 stroke engine gave the following resufts while running on full load: Area of indicator card $=300 \mathrm{~mm}^{2}$, Length of diagram $=45 \mathrm{~mm}$, Spring constant $=1.5 \mathrm{bar} / \mathrm{mm}$; Speed of the engine $=400 \mathrm{rpm}$; Load on the brake $=370 \mathrm{~N}$; Spring balance reading $=55 \mathrm{~N}$; Diameter of brake drum $=1.2 \mathrm{~m}$; Fuel consumption $=2.8 \mathrm{~kg} / \mathrm{h}$; Calorific value of fuel $=41800 \mathrm{~kJ} / \mathrm{kg}$; Diameter of cylinder $=160 \mathrm{~mm}$; Stroke of piston $=200 \mathrm{~mm}$, Calculate:
i) Brake power.
ii) Indicated mean effective pressure.
iii) Brake specific fuel consumption.
iv) Brake thermal efficiency.

Q4) a) What is mean by Dynamometer? Explain working of any one type of Dynamometer with the help of neat sketch.
b) During a test on a single cylinder,four stroke engine having a compression ratio of 8, following data were recorded: Bore $=12 \mathrm{~cm}$; Stroke $=14.5 \mathrm{~cm}$; Indicated mean effective pressưre $=2.5$ bar; Dead load on dynamometer, $\mathrm{W}=60 \mathrm{~N}$; Spring balance readings, $\mathrm{S}=19 \mathrm{~N}$; Effective radius of the flywheel, $\mathrm{R}=40 \mathrm{~cm}$; Fuelconsumption, $\mathrm{mf}=1.0 \mathrm{~kg} / \mathrm{hr}$., Calorific value of the fuel used $\mathrm{C}=42000 \mathrm{~kJ} / \mathrm{kg}$; Speed, $\mathrm{N}=2500 \mathrm{rpm}$. Determine its indicated power, brake power, mechanical efficiency, air standard efficiency,

Q5) a) Enumerate the arious components of IC engine to be lubricated. Explain with neat sketch any one type of lubrication system.
b) Exprain the need of lubrication of Engine in Automobiles. List down the differentEngine components lubricated in the Automobiles.

Q6) a) Drawneat, labelled sketch of battery ignition system. List down various parts.of battery ignition systems.
b) Enumerate the various alternative fuels for $1 C^{\circ}$ engines. What are the advantages and disadvantages of LPGas alternative fuel in engine? [9]

Q7) a) What are the advantages of multiesaging inteciprocating air compressor?[6]
b) Compare rotary compressor with reciprocating compressor. A single stage reciprocating compressor takes $1 \mathrm{~m}^{3}$ of air per minute at 1.013 bar
 clearance is negligible.
c) Calculate:
i) Mass of the air delivered per minute
ii) Delivery temperature
iii) Indicated power

Take individual gas constant $\mathrm{R}=287 \mathrm{~J} / \mathrm{kgK}$
OR
Q8) a) Explain with neat sketch multi-stage reciprocating air compressor.
b) Explain roots blower compressor with neat sketch
c) A single stage single acting reciprocating air compessor fas entering at $1 \mathrm{bar}, 20^{\circ} \mathrm{C}$ and compression occurs following polytropic with index 1.2 up to the delivery pressure of 12 bar. The compressor runs at the speed 240 rpm and has L/D ratio of 1.8 the compressor has mechanical efficiency of 0.88 . Determine the isothermal efficiency and cylinder dimesions. Also find out the rating of drive requied to run the compressor which admits $1 \mathrm{~m}^{3}$ of air per minute.


