Dr. D. Y. Patil Pratishthan's

DR. D. Y. PATIL INSTITUTE OF ENGINEERING, MANAGEMENT & RESEARCH AKURDI PUNE

DEPARTMENT OF MECHANICAL ENGINEERING

pourder under de la contraction de la contractio

- Identify and use units and notations in Thermodynamics.
- Explain the concepts of entropy, enthalpy, reversibility and irreversibility.
- Apply the first and second laws of Thermodynamics to various gas processes and cycles.
- To get conversant with properties of steam, dryness fraction measurement, vapor processes and Thermodynamic vapor cycles, performance estimation.
- To get conversant with Psychrometric Charts, Psychrometric processes, human comfort conditions.

• Apply various laws of thermodynamics to various systems and processes

- Apply the concept of Entropy, calculate heat, work and other important thermodynamic properties for various ideal gas processes
- Estimate performance of various Thermodynamic gas power cycles and gas refrigeration cycle and availability in each case.
- Estimate the condition of steam and performance of vapour power cycle and vapour compression cycle.
- Estimate Stoichiometric air required for combustion, performance of steam generators and natural draught requirements in boiler plants.
- Use Psychrometric charts and estimate various essential properties related to Psychrometry and its processes.

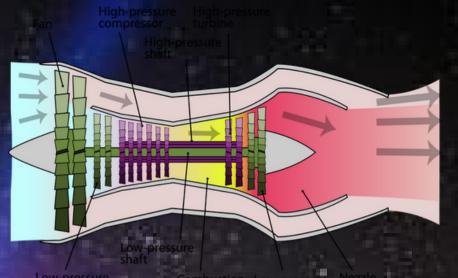
THERMODYNAMICS LABORATORY

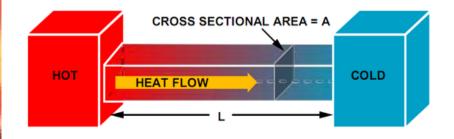
THERMODYNAMICS IS A **BRANCH OF PHYSICS** THAT DEALS WITH HEAT, WORK, AND **TEMPERATURE, AND THEIR RELATION TO** ENERGY, RADIATION, **AND PHYSICAL PROPERTIES OF MATTER.**

PREREQUISTITES

CHEMISTRY, PHYSICS, AND CALCULUS

THERMODYNAMICS APPLICATION AREAS


DESIGN AND ANALYSIS OF AUTOMOTIVE ENGINES ROCKETS, JET ENGINES, AND CONVENTIONAL OR NUCLEAR POWER PLANTS, SOLAR COLLECTORS, AND THE DESIGN OF VEHICLES FROM ORDINARY CARS TO AIRPLANES


THERMODYNAMICS

- Validation of First law of thermodynamics
- Determination of Cp and Cv for Ideal gas
- Performance estimation of Air standard cycle
- Determination of dryness fraction of steam
- COP of Simple Vapor Compression Cycle
- Performance estimation of VCC
- Trial on boiler to determine boiler efficiency,

equivalent evaporation and Energy Balance

Technical Specification

- SEPARATING CHAMBER : COMPATIBLE CAPACITY MADE OF STAINLESS STEEL INSULATED WITH CERAMIC WOOL WITH OUTLET TAP WATER LEVEL INDICATOR.
- OPERATING PRESSURE : 2.5 BAR
- THROTTLING CHAMBER : COMPATIBLE CAPACITY PROVIDED WITH GAUGE TO MEASURE INLET PRESSURE BEFORE THROTTLING
- SAFETY VALVE PROVIDED AT TOP
- HEAT EXCHANGER : FOR CONDENSING STEAM AFTER THROTTLING CHAMBER
- STEAM PRESSURE : PRESSURE GAUGE
- TEMPERATURE SENSOR : ALCOHOL THERMOMETER FOR MEASURING THE TEMPERATURE OF SUPERHEATED STEAM

Junker's Gas Calorimeter

Technical Specification

- STAINLESS STEEL CALORIMETER
- BURNER WITH NOZZLES)
- TRIPOD STAND, A GAS FLOW METER (CAT. NO. IRI 08)
- PRESSURE GOVERNOR
- REQUISITE TUBING & MEASURING JARS AS WELL AS THERMOMETERS (0.10C GRADUATION) FOR READING INLET & OUTLET WATER TEMPERATURES

Bomb's Calorimeter

Technical Specification

MEASUREMENT VARIABLES PROPELLANTS OXYGEN OPERATING PRESSURE MAX MEASUREMENT UNITS TEMPERATURE RESOLUTION COMBUSTION BOMB: RESOLUTION: RELATIVE STANDARD DEVIATION: MEASUREMENT RANGE: CRUCIBLE TYPE: : HEAT OF COMBUSTION, GROSS CALORIFIC VALUE OF SOLID, LIQUID FUELS AND

:40 BAR : J/KG : 0.001°C ACID RESISTANT STABILIZED STAINLESS STEEL 0.001 KCAL/GM 0.1% UP TO 40,000 J/GM CORROSION RESISTANT ALLOY

Orsat Apparatus

Technical Specification

AUTOMATION GRADE	: MANUAL
TYPE	: CHEMICAL ANALYSIS
MATERIAL	: BOROSILICATE GLASS &
WOODEN	
NO OF GASES ANALYZED 03	: CO2,O2 AND CO
CAPACITY	: 10-2000 ML