
ENERGY AUDIT REPORT

of

Dr D Y Patil Pratishthan's, Dr. D. Y. Patil Institute of Engineering Management and Research, Akrudi, Pune

Year: 2020-21

Prepared by

Enrich Consultants

Yashashree, 26, Nirmal Bag Society
Near Muktangan English School, Parvati, Pune 411009
Phone: 09890444795 Email: enrichcons@gmail.com

MAHARASHTRA ENERGY DEVELOPMENT AGENCY

Av ISO 9001 : 3000 Reg. no. : RCI 91 / 2460

Maharashtra Energy Development Agency

(Government of Maharashtra Institution)

Aundh Road, Opposite Spicer College Road, Near Commissionerate of Animal Husbandary,

Aundh, Punc, Maharashtra 411067

Ph No: 020-35000450

Email: eee@mahauria.com, Web: www.mahauria.com

ECN/2021-22/CR-14/1577

22rd April, 2021

FOR CLASS 'A'

We hereby certify that, the firm having following particulars is registered with MAHARASHTRA ENERGY DEVELOPMENT AGENCY (MEDA) under given category as "Energy Planner & Energy Auditor" in Maharashtra for Energy Conservation Programme of MEDA.

Name and Address of the firm : M/s Enrich Consultants

Yashashree, Plot No. 26, Nirmal Bug Society, Neur Muktangan English School, Purvati,

Pune - 411009.

Registration Category : Empanelled Consultant for Energy Conservation

Programme for Class 'A'

Registration Number : MEDA/ECN/2021-22/Class A/E4-03

 Energy Conservation Programme intends to identify areas where wasteful use of energy occurs and to evaluate the scope for Energy Conservation and take concrete steps to achieve the evaluated energy savings.

- MEDA reserves the right to visit at any time without giving prior information to verify quarterly activities performed by the firm and canceling the registration, if the information is found incorrect.
- This empanelment is valid till 21" April, 2023 from the date of registration, to carry out energy audits under the Energy Conservation Programme
- The Director General, MEDA reserves the right to cancel the registration at any time without assigning any reasons thereof.

General Manager (EC)

Enrich Consultants

Yashashree, 26, Nirmal Bag Society,
Near Muktangan English School, Parvati, Pune 411 009
Tel: 09890444795 Email: enrichcons@gmail.com

Ref. EC/DYPIEMR/20-21/01

Date: 25/7/2021

CERTIFICATE

This is to certify that we have conducted Energy Audit at Dr D Y Patil Pratishthan's Dr. D. Y. Patil Institute of Engineering Management and Research, Akurdi, Pune in the Academic year 2020-21.

The Institute has adopted following Energy Efficient practices:

- Usage of Energy Efficient LED Fittings
- Usage of Energy Efficient BEE STAR Rated equipment
- Maximum usage of Day Lighting
- Installation of 20 kWp Roof Top Solar PV Plant.
- Installation of 1500 LPD Solar Thermal Water Heating System

We appreciate the support of Management, involvement of faculty members and students in the process of Energy Conservation.

For Enrich Consultants.

Maherold

A Y Mehendale,

Certified Energy Auditor

EA-8192

INDEX

Sr. No	Particulars	Page No
1	Acknowledgement	5
11	Executive Summary	6
Ш	Abbreviations	7
1	Introduction	8
2	Study of Connected Load	9
3	Study of Electrical Energy Consumption	10
4	Study of Carbon Foot printing	12
5	Study of Usage of Alternate Energy	14
6	Study of Usage of LED Lights	15

ACKNOWLEDGEMENT

We at Enrich Consultants, Pune, express our sincere gratitude to the management of Dr D Y Patil Pratishthan's Dr. D. Y. Patil Institute of Engineering Management and Research, Akurdi, Pune, for awarding us the assignment of Energy Audit of Akurdi campus for the Academic Year: 2020-21.

We are thankful to all the Head of the Departments & Staff members for helping us during the field study.

EXECUTIVE SUMMARY

 Dr. D. Y. Patil Pratishthan's Dr. D. Y. Patil Institute of Engineering Management and Research, Akurdi, Pune consumes Energy in the form of Electrical Energy used for various gadgets, Office & other facilities.

2. Present Energy Consumption:

No	Parameter /Value	Energy Purchased, kWh	CO ₂ Emissions, MT
1	Total	61047	54.94
2	Maximum	9718	8.75
3	Minimum	2942	2.65
4	Average	5087.25	4.58

3. Various Majors Adopted for Energy Conservation:

- Usage of Energy efficient LED fittings
- · Usage of BEE STAR Rated Equipment
- Maximum usage of Day Lighting
- Installation of 20 kWp Roof Top Solar PV Plant
- Installation of 1500 LPD Solar Thermal Water Heating System

4. Usage of Alternate / Renewable Energy:

- . The Institute has installed 20 kWp Roof Top Solar PV Plant.
- The Energy purchased from MSEDCL in 2020-21 is 61047 kWh
- . Energy generated by Solar PV Plant is 24000 kWh
- Therefore the percentage of Usage of Alternate Energy to Annual Energy Demand in the Year: 2020-21 works out to be 28.22 %.

5. Usage of LED Lighting:

- The total Total Lighting Load is 34.21 kW.
- The Annual LED Lighting Load is 34,21 kWh.
- The % of Total Lighting Requirement met by LED Lighting is 100 %.

Notes & Assumptions:

- 1. 1 kWh of Electrical Energy releases 0.9 Kg of CO2 into atmosphere
- Average Energy generated by 1 kWp Roof Top Solar PV System: 4 kWh
- 3. Annual Solar Energy Generation Days: 300 Nos

7. References:

- For CO₂ Emissions: www.tatapower.com
- 2. For Solar PV Energy Generation: www.solarrofftop.gov.in

ABBREVIATIONS

AC : Air conditioner

CFL : Compact Fluorescent Lamp

FTL : Fluorescent Tube Light

LED ; Light Emitting Diode

PL : Pin Type Light Fitting

kWh : kilo-Watt Hour

Qty : Quantity

W : Watt

kW : Kilo Watt

D/L : Down Lighter

PC : Personal Computer
MT : Metric Ton

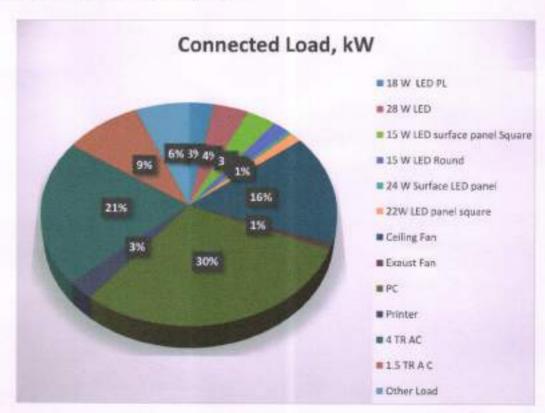
CHAPTER-I INTRODUCTION

1.1 Objectives:

- 1. To study Connected Load
- 2. present level of Energy Consumption
- 3. To Study the present CO2 emissions
- 4. To study Usage of Renewable Energy
- 5. To study usage of LED Lights

1.2 Table No 1: General Details of Institute:

No	Head	Particulars	
1	Name Dr D Y Patil Pratishthan's Dr. D. Y. Patil Institute of Engineer Management and Research, Akurdi		
2	Address D Y Patil Educational Complex, Sector 29, Nigdi, Pradhikara Akurdi, Pune		
3	Year of Establishment	2012-13	

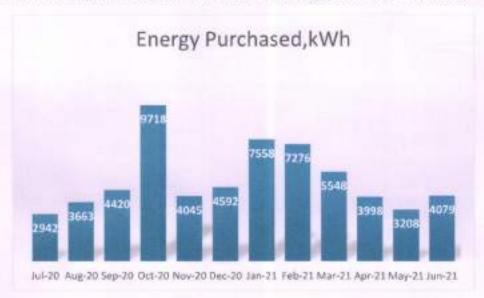

CHAPTER-II STUDY OF CONNECTED LOAD

In this chapter, we present the details of various Electrical loads as under

Table No-2: Study of Equipment wise Connected Load:

No	Equipment	Qty	Load, W/Unit	Load, kW
1	18 W LED PL	384	18	6.91
2	28 W LED	348	28	9.74
3	15 W LED surface panel Square	551	15	8.27
4	15 W LED Round	316	15	4.74
5	24 W Surface LED panel	51	24	1.22
6	22W LED panel square	151	22	3,32
7	Ceiling Fan	587	65	38.16
8	Exhaust Fan	26	65	1.69
9	PC	563	125	70.38
10	Printer	43	150	6.45
11	4 TR AC	10	5000	50.00
12	1.5 TR A C	12	1800	21.60
13	Other Load	100	150	15.00
14	Total			237

Chart No-1: Details of Connected Load:


STNAT. SONOS SONOS

CHAPTER-III STUDY OF ELECTRICAL ENERGY CONSUMPTION

In this chapter, we present the analysis of Electricity Energy Consumption Table No 3: Electrical Energy Consumption Analysis- 2020-21:

No	Month	Energy Purchased, kWh
1	Jul-20	2942
2	Aug-20	3663
3	Sep-20	4420
4	Oct-20	9718
5	Nov-20	4045
6	Dec-20	4592
7	Jan-21	7558
8	Feb-21	7276
9	Mar-21	5548
10	Apr-21	3998
11	May-21	3208
12	Jun-21	4079
13	Total	61047
14	Maximum	9718
15	Minimum	2942
16	Average	5087.25

Chart No 2: To study the variation of Month wise Energy Consumption, kWh:

THE ACTION OF THE PROPERTY OF

Table No 4: Key Parameters:

No	Parameter	Energy Purchased, kWh
1	Total	61047
2	Maximum	9718
3	Minimum	2942
4	Average	5087.25

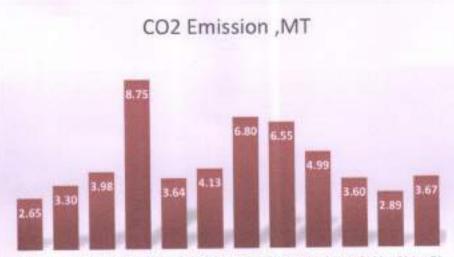
CHAPTER-IV CARBON FOOTPRINTING

A Carbon Foot print is defined as the Total Greenhouse Gas emissions, emitted due to various activities.

In this we compute the emissions of Carbon-Di-Oxide, by usage of the various forms of Energy used by the Institute for performing its day to day activities

The Institute uses Electrical Energy for various Electrical gadgets.

Basis for computation of CO₂ Emissions:


The basis of Calculation for CO₂ emissions due to Electrical Energy are: 1 Unit (kWh) of Electrical Energy releases **0.9 Kg of CO₂** into atmosphere

Based on the above Data we compute the CO₂ emissions which are being released in to the atmosphere by the Institute due to its Day to Day operations

Table No 5: Month wise CO2 Emissions:

No	Month	Energy Purchased, kWh	CO ₂ Emission ,MT
1	Jul-20	2942	2.65
2	Aug-20	3663	3.30
3	Sep-20	4420	3.98
4	Oct-20	9718	8.75
5	Nov-20	4045	3.64
6	Dec-20	4592	4.13
7	Jan-21	7558	6.80
8	Feb-21	7276	6.55
9	Mar-21	5548	4.99
10	Apr-21	3998	3.60
11	May-21	3208	2.89
12	Jun-21	4079	3.67
13	Total	61047	54.94
14	Maximum	9718	8.75
15	Minimum	2942	2.65
16	Average	5087.25	4.58

Chart No 3: Representation of Month wise CO2 emissions:

Jul-20 Aug-20 Sep-20 Oct-20 Nov-20 Dec-20 Jan-21 Feb-21 Mar-21 Apr-21 May-21 Jun-21

Table No 6: Key Parameters:

No	Value	Energy Purchased, kWh	CO ₂ emissions, MT
1	Total	61047	54.94
2	Maximum	9718	8.75
3	Minimum	2942	2.65
4	Average	5087.25	4.58

CHAPTER-V STUDY OF USAGE OF ALTERNATE ENERGY

The Institute has installed 20 kWp Roof Top Solar PV Plant.

In this Chapter, we compute the percentage of usage of Alternate / Renewable Energy to Annual Energy Demand of the Institute.

Table No 7: Computation of % usage of Alternate Energy to Annual Energy Demand:

No	Particulars	Value	Unit
1	Energy Purchased from MSEDCL	61047	kWh
2	Installed Roof Top Solar PV Plant Capacity	20	kWp
3	Average Daily Energy Generated	4	kWh/kWp
4	Annual Generation Days	300	Nos
5	Annual Solar Energy Generated	24000	kWh
6	Total Energy Demand = (1) + (5)	85047	kWh
7	% of Usage of Alternate Energy to Total Annual Energy Demand= (5)*100/ (6)	28.22	%

Photograph of Roof Top Solar PV Plant:

CHAPTER VI STUDY OF USAGE OF LED LIGHTS

In the following Table, we present the percentage of annual Lighting load met by LED lights.

Table No 8: Computation of Percent Usage of Annual LED Usage to Annual Lighting Power Requirement:

No	Particulars	Value	Unit
1	18 W LED PL	384	Nos
2	28 W LED	348	Nos
3	15 W LED surface panel Square	551	Nos
4	15 W LED Round	316	Nos
5	24 W Surface LED panel	51	Nos
6	22 W LED panel square	151	Nos
7	Demand of 18 W LED PL Fitting	18	W/Unit
8	Demand of 28 W LED Fitting	28	W/Unit
9	Demand of 15 W LED Square Fitting	15	W/Unit
10	Demand of 15 W LED Round Fitting	15	W/Unit
11	Demand of 24 W LED Fitting	24	W/Unit
12	Demand of 22 W LED Fitting	22	W/Unit
13	Load of 18 W LED PL Fitting	6.91	kW
14	Load of 28 W LED Fitting	9.74	kW
15	Load of 15 W LED Square Fitting	8.27	kW
16	Load of 15 W LED Round Fitting	4.74	kW
17	Load of 24 W LED Fitting	1.22	kW
18	Load of 22 W LED Fitting	3.32	kW
19	Total Lighting Load=13+14+15+16+17+18	34.21	kW
20	Total LED Lighting load=18	34.21	kW
21	% of Usage of LED to Total Lighting Load=20*100/19	100	%